UNIVERSIDADE CATÓLICA DE GOIÁS
Pró-Reitoria de Pós Graduação e Pesquisa
Programa de Pós Graduação (Mestrado) em Ciências Ambientais e Saúde

DEPÓSITOS TECNOGÊNICOS CONSTRUÍDOS NA BACIA DO RIBEIRÃO ANICUNS – GOIÂNIA: IMPLICAÇÕES AMBIENTAIS E DE SAÚDE

ELIZABETH SOARES DA SILVA

GOIÂNIA/2008
DEPÓSITOS TECNOCÊNICOS CONSTRUÍDOS NA BACIA DO RIBEIRÃO ANICUNS – GOIÂNIA: IMPLICAÇÕES AMBIENTAIS E DE SAÚDE

ELIZABETH SOARES DA SILVA

Prof. Orientador: Dr. Julio Cezar Rubin de Rubin
Prof. Co-orientadora: Dra. Imtraut Araci H. Pfrimer

Dissertação de mestrado apresentada ao Programa de Pós - Graduação em Ciências Ambientais e Saúde, da Universidade Católica de Goiás, como requisito parcial para obtenção de título de mestre em Ciências Ambientais e Saúde.

GOIÂNIA/2008
A todos meus familiares por me apoiarem nesta jornada e serem meu porto seguro.
SUMÁRIO

RESUMO vii
ABSTRACT viii
LISTA DE FIGURAS ix
LISTA DE QUADROS xiii

1. INTRODUÇÃO 1

2. LOCALIZAÇÃO DA ÁREA DE ESTUDO: ASPECTOS FISIOGRÁFICOS 3
2.1. Histórico de Goiânia 3
2.2. Características físicas 10

3. REVISÃO BIBLIOGRÁFICA 15
3.1. Classificação e características gerais dos depósitos tecnogênicos 15
3.2. Depósitos tecnogênicos construídos: Implicações ambientais 19
3.2.1. Resíduos perigosos 21
3.3. Implicações na saúde 21
3.4. O que fazer com o lixo produzido pelo homem? 27
3.4.1. Destinação do lixo 27
3.5. Legislação 29
3.6 Ação biológica dos elementos químicos 33

4. MÉTODOS E TÉCNICAS 36
4.1. Campo 36
4.2. Gabinete 37
4.3. Laboratório 37

5. RESULTADOS 39
5.1 Depósito Tecnogênico Construído 2 57
5.2 Depósito Tecnogênico Construído 6 60
5.3 Depósito Tecnogênico Construído 7 62
5.4 Depósito Tecnogênico Construído 11 64
5.5 Aspectos geoquímicos integrados 66

6. DISCUSSÃO 72
7. CONCLUSÕES 79
8. REFERÊNCIAS BIBLIOGRÁFICAS 81
ANEXOS vi
LISTA DE FIGURAS

Figura 1 - Expansão urbana de Goiânia apresentada em períodos. 10
Escala: 1:600.000

Figura 2 – Município de Goiânia: rede hidrográfica, demarcação da bacia 14
do ribeirão Anicuns e seus municípios limítrofes

Figura 3 - Coleta de amostras de solo. Data:04/10/2006 36

Figura 4 – Procedimento executado para dimensionamento do depósito. 37
Data: 04/10/2006

Figura 5 – Imagem satélite da bacia do ribeirão Anicuns (EM ANEXO).

Figura 6 – Vista geral do D.T.C. 1. Data: 04/10/2006 39

Figura 7 – Detalhe do D.T.C. 1. em 04/10/2006 40

Figura 8 – Vista parcial do D.T.C. 2. Data: 04/10/2006 40

Figura 9 – Vista em outro ângulo do D.T.C. 2. Data: 04/10/2006 41

Figura 10 – Vista geral do D.T.C. 3. Local: Data: 04/10/2006 41

Figura 11 – Vista geral do D.T.C. 4. Data: 04/10/2006 42

Figura 12 – Vista em outro ângulo do D.T.C. 4. Data: 04/10/2006 42

Figura 13 – Imagem da margem oposta de D.T.C. 5. Data: 04/10/2006 43

Figura 33 – Detalhes dos rejeitos encontrados no depósito. Data: 07/10/2006 54

Figura 34 – Vista parcial do D.T.C. 17. Data: 07/10/2006 54

Figura 40 – Vista parcial do D.T.C. Data: 13/09/2007 58

Figura 41 – Vista parcial D.T.C. evidenciado, principalmente resíduos de construção civil Data: 13/09/2007 59

Figura 42 – Gráfico apresentando os componentes do D.T.C. 59

Figura 43 – Vista parcial do depósito. Data: 13/09/2007 60

Figura 45 – Gráfico apresentando a composição do depósito 61

xi

Figura 48 – Gráfico apresentando a composição do depósito

Figura 50 – Imagem apresentando detalhes dos rejeitos do depósito. Local: Rua C 107 Data: 13/09/2007

Figura 51 – Gráfico apresentando a composição do depósito
LISTA DE QUADROS

<table>
<thead>
<tr>
<th>Quadro</th>
<th>Descrição</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tipos de resíduos, características e tempo de decomposição</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>Microvetores, doenças e tempo de sobrevivência dos Agentes Patogênicos</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>Vetores, formas de transmissão e enfermidades</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>Técnicas de destinação do lixo, vantagens e desvantagens</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>Elementos e substâncias químicas no meio ambiente e a saúde humana</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>Resultados analíticos dos elementos químicos</td>
<td>66</td>
</tr>
<tr>
<td>7</td>
<td>Sumário estatístico dos solos coletados nos D.T.Cs selecionados e valores de referência da CETESB</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>Matriz de correlação dos elementos químicos analisados no solo da bacia do ribeirão Anicuns – Goiânia – GO</td>
<td>69</td>
</tr>
</tbody>
</table>
RESUMO

Através da atividade produtiva, o homem tem atuado sobre a natureza a ponto de ter sido proposto um novo período geológico para caracterizar a atualidade, que seria o Período Quínário ou Tecnogêno. Juntamente com a sugestão para um novo período, surgiu também o termo depósito tecnogênico, que caracteriza uma vasta quantidade de depósitos formados como resultado da ação humana. Podem ser classificados em: construídos, induzidos e modificados. O presente trabalho teve por objetivo estudar os depósitos construídos. Mais propriamente, identificar e caracterizar os depósitos tecnogênicos construídos encontrados na bacia do Ribeirão Anicuns no Município de Goiânia – GO e apresentar as implicações para o meio ambiente e a saúde humana. Como oferece alimentação abundante e facilidade de abrigo, atrai muitos insetos e animais que podem disseminar direta ou indiretamente muitas doenças, além de degradar a paisagem, contaminar o solo e as águas superficiais e subterrâneas. Neste trabalho foram identificados dezenove depósitos na bacia do Ribeirão Anicuns, como se pode observar nos resultados obtidos, os referidos depósitos apresentam grande diversidade de detritos, alguns podem levar milhões de anos para se decompor, outros, possuem substâncias prejudiciais ao solo e a saúde. A população de Goiânia, já vem percebendo os impactos desses depósitos. O equacionamento desses problemas esbarra na falta de programas educativos capazes de envolver a comunidade e escassez de políticas públicas atuais voltadas para a sociedade urbana.

Palavras-chave: Técnogeno, depósito tecnogênico, meio ambiente, saúde humana, políticas públicas.
AGRADECIMENTOS

Meus agradecimentos às pessoas abaixo nominadas, cuja colaboração foi fundamental e sem as quais teria sido impossível o desenvolvimento deste trabalho:

Ao professor Dr. Julio Cezar Rubin de Rubin, orientador, sempre seguro, objetivo e firme que me guiou nos primeiros passos do conhecimento científico. Agradeço pelo conhecimento compartilhado, pelas discussões, sugestões, críticas construtivas, empenho na busca de artigos científicos. Agradeço pela confiança desde o primeiro contato, por ter acreditado em minha capacidade e por tantas vezes ter entendido minhas limitações e, principalmente, pela paciência;

À professora Dra. Irmtraut Araci H. Pfrimer co-orientadora, pela disponibilidade e apoio, pelas sugestões e pela presença principalmente na etapa final deste trabalho;

À professora Dra. Eline Jonas pela constante colaboração e empréstimo de livros e artigos;

À professora Dra. Maira Barberi por fazer parte da banca de exame de qualificação e contribuir com suas sugestões valiosas;

Ao professor Dr. Eric Santos Araújo, amigo e companheiro que guiou meus primeiros passos no conhecimento da geoquímica, agradeço também por participar da banca de exame de qualificação e contribuir com suas sugestões;

Ao professor Dr. Luiz Fabrício Zara pela disponibilidade e apoio nas análises químicas dos elementos, assim como a Universidade Católica de Brasília pela disponibilização do laboratório, apoio imprescindível a realização deste trabalho;

Aos professores do mestrado, que possibilitaram, com dedicação, a mediação do conhecimento, contribuindo muito para minha formação pessoal e profissional;
Aos estagiários, Fernanda Ramos Cyriaco, Gisele Lisboa de Brito e Diogo Shintome de Faria que ajudaram no trabalho de campo, sempre bem humorados, apesar das dificuldades.

A todos os colegas do mestrado, pela convivência alegre e enriquecedora;

As colegas Lourdes Antônia e Osvaldina Martins por compartilhar seus conhecimentos em tecnologia e língua inglesa, o que contribuiu muito para a conclusão deste curso.

Aos familiares, colegas e amigos pela confiança, estímulo e compreensão nos momentos de ausência, aspectos fundamentais para a conclusão deste trabalho.
ABSTRACT

SILVA, Elizabeth Soares. TECNOGÊNICOS, BASIN DEPOSITS IN THE STREAM ANICUNS - GOIÂNIA: IMPLICATIONS AND ENVIRONMENTAL HEALTH. (Master in Environmental Science and Health) - Catholic University of Goiás, 2008.

Through productive activity, man has acted on the nature of the item has been proposed a new geological period to characterize the present time, which would be the Period “Quinário” or “Technogene”. Along with the suggestion for a new period, the term also came “technogenic” deposit, which features a vast amount of deposits formed as a result of human action. Can be classified as: constructed, induced and modified. This work is held to study the deposits built. More properly, identify and characterize the deposits built “tecnogênicos” found in the basin of Stream Anicuns” in the city of Goiânia - GO and present the implications for the environment and human health. How to offer food abundant and ease of shelter, attract many insects and animals that can spread directly or indirectly many diseases, in addition to degrade the landscape, the soil and contaminate surface water and groundwater. In this study were identified nineteen deposits in the basin of Stream Anicuns, such as the results, these deposits show great diversity of debris, some may take millions of years to decompose, others have substances harmful to the soil and health. The population of Goiânia, is already realizing the impact of these deposits. The resolution of these problems hampered in the absence of educational programmes capable of involving the community and lack of public policies geared to the current urban society.

Keywords: Technogene, technogenic deposit, the environment, human health, public policies.
1. INTRODUÇÃO

Através da atividade produtiva, a ação do homem sobre a natureza, tem produzido efeitos geológicos e geomorfológicos que se acumulam em quantidade e diversificam em qualidade, a ponto de ter sido proposta a designação de um novo período geológico para caracterizar a atualidade: o Quinário ou Tecnógeno. A geologia do tecnógeno concentra-se, então, no estudo de depósitos e feições do relevo, chamados tecnogênicos gerados diretamente ou influenciados pela atividade humana, mas também de seus processos geradores específicos. São nos centros urbanos que a ação do homem sobre o ambiente, se amplia e diversifica, ganhando imediato interesse prático em função de afetar, diretamente e imediatamente, a vida de grande quantidades de seres humanos (Pelloggia, 1998).

Além dos depósitos tecnogênicos específicos induzidos pela erosão, o termo caracteriza uma vasta quantidade de depósitos formados como resultado da ação humana. Pode-se classificar-los em três tipos principais de acordo com a proposta de Oliveira (1990): construídos (aterros, corpos de rejeito, etc.); induzidos (assoreamento, aluviões modernos, etc.); e modificados (depósitos naturais alterados tecnogênicos por efluentes, adubos, etc.) (Oliveira 1990). Segundo o autor, os depósitos tecnogênicos construídos são resultantes da apropriação e da transformação do relevo, executadas com o objetivo de instalar obras de infra-estrutura, e também do lançamento de lixo e de bota fora, tanto pela comunidade como pela prefeitura.

A problemática do lixo é uma das grandes preocupações mundiais. Pode-se dizer que o lixo urbano resulta da atividade diária do homem em sociedade e que os fatores principais que regem sua origem e produção são, basicamente, dois: o aumento populacional e a intensidade da industrialização. Observando o comportamento destes fatores ao longo do tempo, pode-se verificar que existem fortes interações entre eles. Por exemplo, o aumento populacional exige maior incremento na produção de alimentos e bens de consumo direto.

A tentativa de atender esta demanda faz com que o homem transforme cada vez mais matérias primas em produtos acabados, gerando maiores quantidades de resíduos que, dispostos inadequadamente, comprometem o meio ambiente. Assim
sendo, o processo de industrialização constitui-se num dos principais fatores da origem e produção do lixo.

Os depósitos de lixos, degradam a paisagem, geralmente, produzem mal cheiro e colocam em risco o meio ambiente e a saúde humana. Como oferecem alimentação abundante e facilidade de abrigo, atraem muitos insetos e animais que podem disseminar direta ou indiretamente, várias doenças. O lixo fora de lugar, além de causar perigo para a saúde, com as chuvas polui as águas superficiais e subterrâneas, pois infiltram no solo e contaminam o lençol freático (Brasil, 2004).

A existência de relações entre a sociedade, meio ambiente e saúde das populações humanas já está presente nos primórdios da civilização humana, através de escritos históricos. Após o século XIX, as cidades cresciam, sobretudo, devido a Revolução Industrial. Graças a isso, as condições de vida da população se deterioravam. O paradigma científico predominante era o de que as doenças eram resultantes dos acúmulos de dejetos (Pignatti, 2004).

O presente trabalho tem por objetivo identificar e caracterizar depósitos tecnogênicos construídos na bacia do Ribeirão Anicuns no Município de Goiânia – GO e apresentar as conseqüências para o meio ambiente, relacionando as possíveis enfermidades que podem ser originadas a partir do contato com esses depósitos. É uma abordagem multidisciplinar, que aborda a estreita relação entre sociedade, meio ambiente e saúde.

Essa dissertação está inserida no Projeto Caracterização dos depósitos tecnogênicos e evolução da paisagem na área da Bacia do Ribeirão Anicuns, Goiânia/GO: Ciências Ambientais e Saúde como subsídio ao planejamento, coordenado pelo professor Julio Cezar Rubin de Rubin.
2. LOCALIZAÇÃO DA ÁREA DE ESTUDO: ASPECTOS FISIOGRÁFICOS

2.1. Histórico de Goiânia

De acordo com Moysés (2004), cada planejamento tem sua história e esta conta um pedaço da história da cidade. Goiânia está inserida num contexto maior, a história do país, da qual se destacam: o Estado como agente propulsor do desenvolvimento; a Marcha para o Oeste; a luta pelo poder local; e o processo de acumulação centrado, sobretudo no Estado de São Paulo, em especial na capital paulista.

Havia uma discussão forte quanto ao papel do Estado para o desenvolvimento do país em 1930, início da revolução que inauguraria uma nova etapa na história do Brasil. Essa questão levantou polêmicas. Argumentos contrários estavam alicerçados no fato de que o mercado era capaz de promover mecanismos de estímulo ao desenvolvimento do país, enquanto os favoráveis entendiam que o mercado não seria capaz de colocar o país na trilha do progresso (Moysés 2004; Gomide 2002).

Moysés (2004) lembra que os personagens dessa discussão eram, o economista e professor Otávio Gouveia de Bulhões, contrário a qualquer forma de intervenção estatal e o empresário paulista Roberto Simonsen, favorável à presença do Estado na economia. Segundo o autor, não é comum um empresário defender a intervenção do Estado e um acadêmico defender a do mercado. Venceu o empresariado da época, que sabia da importância do Estado para acelerar o processo de industrialização do país. A partir dessa discussão, nasceu posteriormente o que se chamou de nacional-desenvolvimentismo, que atingiu seu auge nos anos 50, com a política desenvolvimentista de Juscelino Kubitschek. O autor menciona que é preciso conhecer este contexto porque o primeiro plano urbanístico de Goiânia ou a primeira idéia de como deveria ser a nova capital do Estado, data de 1935, período em que o Estado intervira fortemente na economia do país.

Enquanto em São Paulo e Rio de Janeiro, discutia-se a conveniência ou a não intervenção do estado na economia, em Goiás, Região Centro Oeste, concebia-se a criação de uma nova capital para o Estado, uma cidade com moderna infraestrutura
urbana, voltada para o futuro. A decisão já havia sido tomada em Goiás: não se concebia a criação dessa nova cidade como fruto da dinâmica do mercado, mas como resultado de uma ideia que, aos poucos, foi assumindo uma forma preconcebida, pensada e planejada (Moysés, 2004).

De acordo com Souza & Carneiro (1996), isso ocorria durante a Revolução de 30, que deixava pra trás o poder da oligarquia agrário-exportadora. Pedro Ludovico Teixeira era a força emergente em Goiás sintonizado com os anseios da Revolução. Era o homem que inspirava confiança ao poder central, razão pela qual fora nomeado interventor do Estado de Goiás. Os Caiado representavam as forças conservadoras que compunham os segmentos derrotados. Pedro Ludovico quis transformar em realidade a ideia de se construir uma nova capital, dando ao Estado um novo status no cenário nacional. Segundo o autor, pensar na construção da nova capital era vislumbrar o rompimento total com a mentalidade do passado, representada, para Ludovico, pelo grupo político caiadista.

Para representar o novo governo revolucionário era preciso construir um novo espaço urbano. A edificação de um espaço político distante, menos conservador e livre do poder regional que emergiu no decorrer da Primeira República (Gomide 2002).

Moysés (op. cit.) em seus estudos afirma que Pedro Ludovico Teixeira pensava na construção de uma nova capital para representar a política administrativa do Estado de Goiás. Goiânia sendo a nova capital romperia com o atraso da Cidade de Goiás, instituiria para a vida política do pós-30 o caráter revolucionário que a ela se imaginava.

O ambiente de disputa política marcou a vida da antiga Vila Boa, hoje Cidade de Goiás. Pedro Ludovico Teixeira via-se num espaço cheio de controvérsias, as opiniões dividiam os moradores. Alguns apoiavam novas medidas, como pregava o movimento de 30 outros, eram partidários do governo anterior (Chaul 1999; Moysés op. cit.).

Para Pedro Ludovico, representante político do grupo mudancista em Goiás, a primeira medida rumo ao desenvolvimento da região goiana baseava-se na transferência da capital. De acordo com esse discurso, a inércia era alimentada pela política local e, dessa forma, mantinha-se economicamente vinculada às forças dirigentes da região (Moysés op. cit; Gomide 2002).
Percebe-se que a construção de Goiânia aconteceu não só por razões econômicas, mas principalmente por ordem política. A nova cidade surgia para incrementar a vida rural da região goiana, para atrair novos moradores, para inserir Goiás, de forma mais efetiva, à vida política e econômica do país (Souza & Carneiro 1996).

O primeiro passo foi nomear uma comissão para a escolha de um local adequado. Alguns requisitos fundamentais foram definidos para a construção da nova capital: abundância de água; a proximidade da linha férrea; bom clima e topografia adequada. Inicialmente foram escolhidas três localidades: Bonfim, Ubatat e Campinas, acrescentando-se posteriormente, a cidade de Pires do Rio. Campinas foi escolhida para preencher os requisitos definidos e posteriormente se transformou em capital. Goiânia, fruto de uma idéia, virou cidade e, muito cedo, superou as expectativas de seus planejadores (Gomide op. cit; Moysés op. cit; Ribeiro 2004).

Segundo Chaul (1999), para escolha do nome da nova capital foi aberto um concurso público, em outubro de 1933, através do jornal “O Social”, premiando-se o vencedor com uma assinatura por dois anos do referido jornal. Entre as sugestões apresentadas, decidiu-se por Goiânia, nome apresentado por Caramuru Silva do Brasil, evocando para tal, tradições e continuidade histórica de Goiás. O autor do nome se justificou, dizendo que Goiânia representaria a Nova Goiaz, seria um prolongamento da histórica Vila Boa, monumento grandioso que simbolizaria a glória da origem de todos os goianos.

Moysés (op. cit.) afirma que o processo de estruturação da malha urbana de Goiânia foi dividido em ciclos e que a periodização é uma forma de se recortar, no tempo, os vários momentos da dinâmica de um fenômeno qualquer. No caso de Goiânia apresenta a periodização das autoras Narcisa Cordeiro & Normalice Queiroz (1990), que identificam cinco grandes ciclos.

O primeiro abrange desde as idéias de mudança da capital do Estado no século XIX, até o lançamento da pedra fundamental de Goiânia em 1933. As contribuições para a mudança da capital vieram de vários governadores, como Miguel Lino de Morais; Couto de Magalhães; Carlos Pinheiro Chagas; e por último, o interventor federal Pedro Ludovico Teixeira. A Constituição Estadual de 1918, previa essa possibilidade quando dizia que a cidade de Goyas continuaria a ser a capital do Estado, enquanto outra coisa não deliberasse o Congresso.
O segundo incorpora a decisão pela mudança da capital em 1932-1933 e vai até a aprovação do primeiro Plano Diretor da Cidade, em 1938.

O terceiro compreende os anos 40 e encerra-se com a descaracterização do plano piloto, no final dos anos 1950. Nesses três períodos destacam-se como atores principais o interventor Pedro Ludovico Teixeira e os urbanistas Atílio Corrêa Lima e Armando Augusto Godoy.

O quinto ciclo inicia-se com a criação do Escritório de Planejamento (depois Instituto Municipal de Planejamento e hoje Secretaria Municipal de Planejamento), em 1975. Foi mais uma tentativa de reorganização de espaço urbano, tendo como eixos estruturantes o sistema viário e o transporte coletivo, para tentar humanizar o espaço urbano. Neste ciclo, contribuíram arquitetos experientes, como Jaime Lerner e Lubomir Vicinsky.

Quanto a mudança da capital, Moysés (op. cit.) afirma que esta também era a vontade de outros revolucionários da época:

A necessidade de mudar a capital do Estado era anterior a Pedro Ludovico, e ele soube muito bem adotar a idéia na hora e no momento certo. Era uma estratégia política que interessava a ele e ao grupo que representava. Sabia também que interessava aos revolucionários de 30 e, principalmente, ao presidente Getúlio Vargas (Moysés op. cit. p. 131).

Como artífices da construção de Goiânia, Gomide (op. cit.) e Moysés (op. cit.) destacam três figuras: Pedro Ludovico Teixeira, Atílio Corrêa Lima e Armando Augusto de Godoy. Para eles, são figuras importantes, que simbolizam um tempo de realizações e pertencem a história viva de Goiânia.

Nota-se que a construção de Goiânia era compreendida por Atílio Corrêa Lima num contexto de grandes transformações econômicas, sociais e políticas nacionais que beneficiavam o Estado. Por isso, a construção de uma nova capital para Goiás
possibilitaria seu rápido desenvolvimento, inserindo-o na dinâmica econômica maior. Para Atilio Corrêa, Goiânia era o elemento vital que faltava ao Estado de Goiás. Ao ser construída, assumiria papel estratégico no processo de interiorização do desenvolvimento do país e, ao mesmo tempo, colocaria o Estado em evidência. Também teria uma dupla função: centro econômico social e centro político administrativo. Ao pensar essa dupla função, Atilio Corrêa Lima parecia almejar uma cidade que estivesse à altura de responder a esse desafio. Assim projetou uma cidade com traços nobres, com elementos urbanos de corte monumental, espaços livres e largas avenidas. No seu entendimento, Goiânia serviria de inspiração para outras aglomerações urbanas. Outro aspecto importante do plano de Atilio Corrêa Lima foi assegurar à cidade amplas áreas verdes. Estava previsto inicialmente que quase 1/3 da área da cidade seria ocupada por áreas arborizadas. Isto é, dos 1082 ha da área projetada, 375 ha seriam considerados espaços livres (34,6%) e, desses, 162 ha (43,2%) exclusivamente parques, jardins, playgrounds e áreas destinadas a esportes (Moysés op. cit.).

O traçado em asterisco caracterizava graficamente o urbanismo de Goiânia. A imagem que serve para caracterizar a convergência de diversas vias de circulação em direção a uma praça. À Praça Cívica ficaram convergidas todas as atenções, os fluxos de pessoas e de carros, e em torno dela ficou montado o aparato administrativo da nova capital. Percebe-se que o centro principal da cidade de fato revestiu-se de uma dimensão urbana de grande volume, refletindo certa harmonia entre os espaços construídos, mas em sintonia com a estrutura de poder (Gomide op. cit; Moysés op. cit.).

O traçado de Goiânia pode ser comparado ao corpo humano de uma pessoa: abrigando os prédios administrativos da nova capital, a Praça Cívica bate como o coração de uma pessoa. De lá as decisões políticas atingiam o público e o privado (...) as artérias, as avenidas principais da cidade, pulsando conjuntamente com o poder público, deveriam refletir o controle centralizador de uma cidade que se edificava sob o apoio do Estado Novo (Gomide op. cit. p. 42)

Para maior entendimento, Gomide (op. cit.) divide em três partes a urbanização de Goiânia. Segundo ele, a urbanização aconteceu em decorrência de um movimento acelerado de populações rurais em direção às cidades, ou seja, de fluxos migratórios e de taxas elevadas de crescimento demográfico das populações
urbanas em relação à população rural. O período conhecido com êxodo rural, chegava a Goiás.

Essa mobilidade, entendida nos marcos da economia capitalista, isto é, no deslocamento de grandes levas de migrantes do campo e das pequenas cidades para centros urbanos maiores, é decorrente de um processo que desestrutura as formas de organização familiar e de produção. Por falta de infraestrutura, esses centros se vêem diante de inúmeros problemas sociais e ambientais decorrentes desses deslocamentos (Chaul 1999).

Segundo Moysés (op. cit.) o período que vai de 1933 a 1950 se discutiu o processo de construção da cidade que teve como base cartográfica o plano original elaborado por Atílio Corrêa Lima, alterado e ampliado por Armando Augusto Godoy. É a época da elaboração e implantação do plano original e do planejamento urbano, da consolidação de um projeto atrevido demais para ser desenvolvido no cerrado, distante e esquecido pelo litoral, de onde emanava o poder central.

No período de 1951 a 1979, consolida-se definitivamente um novo processo de urbanização de Goiânia. Os fluxos migratórios intensificam-se até os anos 1960; paralelamente, abandona-se o plano original. O Estado que esteve presente na construção de uma cidade moderna e voltada para o homem, neste período, ele privatiza a construção da cidade, relegando-a à própria sorte. Este período é marcado pelo crescimento desordenado da cidade, resultado da pressão exercida pelos proprietários de terra e especuladores. A população de baixa renda passa a ocupar os fundos de vales e as áreas destinadas ao uso público. Em 1979 a população menos favorecida, chamada sem-teto, organiza-se e planeja a invasão da região Noroeste da cidade que era um espaço reservado para especulação (Ribeiro 2004; Moysés op. cit.).

Moysés (op. cit.) apresenta também o período que vai de 1980 a 1992. Neste contexto, o movimento das invasões constitui um momento importante do processo urbano de Goiânia. O atrevimento da população marginalizada enseja um novo processo. Dessa vez, o Estado atua de forma oposta do plano original. Se, no período de 33 a 50, o Estado compra um espaço e nele planeja a construção de uma cidade, urbanizando-o e transformando-o num lugar apropriado para se viver, agora o Estado faz algo semelhante, porém, muito distante do ideal. Para delimitação do espaço de poder, retira da população o direito de resolver sua carência de moradia por conta própria. Compra fazendas nos arredores da cidade, constrói conjuntos
habitacionais de baixa qualidade, promove parcelamentos, tudo em desacordo com a legislação urbana. Ao fazer isso, repassa a imagem de que é sua a responsabilidade pelos assentamentos humanos. A ação do Estado nesse período é marcada por ilegalidade e populismo. Libera áreas deterioradas centrais e segrega, na zona rural, grande contingente da população carente, assentando-a longe do mercado de trabalho e rompendo as suas relações sociais existentes. Percebe-se claramente a segregação do espaço urbano por meio desta prática. Ao promover a ocupação desse espaço com assentamentos tipicamente urbanos, o Estado deteriora uma área de reserva ambiental e coloca em risco o abastecimento de água da cidade.

Do ponto de vista populacional, os objetivos dos projetistas foram superados. Goiânia foi projetada para abrigar 50 mil habitantes nos anos 50. No entanto, com a explosão populacional chegou a 150 mil habitantes nesse mesmo ano. Hoje tem uma população de mais de um milhão de habitantes.

Goiânia, fundada em 24 de outubro de 1933 possui hoje uma área de 704.08 km² e uma população total de 1093.007 habitantes (Goiânia 2004). Abaixo, imagem apresentando a expansão urbana de Goiânia e seus respectivos períodos (Figura 1).

2.2. Características Físicas

Goiânia está localizada na região Centro-Oeste do país com coordenada 16°40'24" de latitude Sul e 49°15'29" de longitude Oeste, estando no centro-sul do estado de Goiás (SEPLAN 2002).

O clima de Goiânia é comandado pelos sistemas regionais de circulação atmosférica. O Centro-Oeste tem como influência a atuação da massa Tropical Atlântica e Polar Atlântica e, de origem continental, a massa Equatorial Continental e Tropical Continental, as quais deslocam-se sobre o continente, ora avançando, ora recuando (Caseti, 1993).
A estiagem prolongada em Goiânia esta associada à atuação da massa Tropical Atlântica, principalmente de maio a outubro. Por outro lado, os fluxos de noroeste e norte, vinculados à massa Equatorial Continental, "proporciona instabilidade atmosférica e conseqüentes ocorrências pluviométricas por efeito térmico-continental ou mesmo frontal" (Casseti, 1993).

Assim, segundo o autor, a dinâmica da circulação regional explica a sazonalidade climática de Goiânia, definindo claramente padrão climático com verão quente e chuvoso, inverno frio e seco e, primavera com temperaturas elevadas.

As precipitações implicam torrencialidades, sobretudo, em fundos de vales, onde a água escoada é conduzida, favorecida pela impermeabilização das superfícies pela ocupação humana (Goiânia, 2004).

De acordo com a IPLAN (Instituto de Planejamento Municipal) (1992), as temperaturas mais elevadas durante o ano em Goiânia ocorrem nos meses de setembro a dezembro (primavera), com médias oscilando entre 29°C e 31°C, muitas vezes chegando a índices superiores a 35°C. Os meses mais frios correspondem a junho e julho, com médias mínimas oscilando entre 13°C e 18°C. A esse mesmo período tem-se também associado os menores índices de umidade relativa do ar, representando um parâmetro climático que apresenta variação sazonal significativa, chegando a valores extremamente baixos no período mais seco, permitindo assim, variação térmica diária atingindo até 10°C. O período de maior intensidade pluviométrica é de dezembro a março, ocorrendo precipitação média mensal acima de 250 mm. O período compreendido entre abril a setembro, corresponde estação seca, período em que a precipitação média dos meses menos chuvosos (junho a agosto) fica abaixo de 10 mm (Diretoria de geociências do IBGE 1992; IPLAN 1992).

Segundo a diretora de Geociências do IBGE (1992) e IPLAN (1992), a variabilidade climática não é explicada apenas em função da dinâmica regional do clima, existem elementos e fatores, tanto de ordem natural quanto antrópica, que influenciam na variação dos parâmetros atmosféricos.

No que concerne a geologia, o polígono analisado é representado basicamente por rochas de embasamento formado pelo Complexo Goiano e o Grupo Araxá de um lado e os aluvios do rio Meia Ponte e do ribeirão João Leite (Diretoria de Geociências do IBGE 1992).

O Complexo Goiano é composto por um conjunto de rochas cristalinas submetidas a metamorfismo de grau médio a alto. Apresenta diversas fases de
deformações, razão pela qual exibe elementos com geometria e padrão estrutural diversos. São bem características as falhas e fraturas, que frequentemente, os curso d’água subordinam-se (Diretoria de Geociências do IBGE op. cit.).

O Grupo Araxá ocorre na porção meridional do município. Trata-se de um conjunto de rochas vulcânica e sedimentar que sofreu metamorfismo de grau médio a forte. Resultaram, então, xistos, gnaisses, e quartizitos, dobrados, fraturados e falhados (Diretoria de Geociências do IBGE op. cit.).

O relevo da região, a partir do final do Terciário, vem sendo submetido a um intenso processo de esculturação, resultando daí a geração de cinco grandes unidades geomorfológicas: 1) Planalto Dissecado de Goiânia; 2) Chapadas de Goiânia; 3) Planalto Embutido de Goiânia; 4) Terraços e Planícies da Bacia do Rio Meia Ponte; 5) Fundos de Vale. A essas diversas unidades associam-se os depósitos eluviais, coluviais e aluviais (Diretoria de Geociências do IBGE op. cit.; SEPLAN 2002.).

O município de Goiânia caracteriza-se por uma homogeneidade muito grande de tipos de solos, predominando os Latossolos. Em relevos planos, de suaves ondulações, sob vegetação de savanas e florestas (menos frequentemente) encontram-se os Latossolos Vermelhos-escuro, Latossolos Roxos e Latossolos Vermelhos-amarelos. Nos relevos que variam de suave ondulado a forte ondulado, sob vegetação predominantemente de florestas encontra-se o Pdozólico Vermelho-escuro (Diretoria de Geociências do IBGE op. cit.; SEPLAN 2002).

A ocorrência de água subterrânea é condicionada à existência de rochas que sejam capazes de acumular e permitir a circulação de líquidos. Observa-se que a região em estudo é formada pelos depósitos de coluviões. Esse tipo de sedimento, tais quais grandes esponjas, constituem verdadeiros reservatórios de água necessária ao abastecimento das cisternas da área urbana. Por outro lado, essa água poderá vir a ser contaminada pela existência de fossas, pela existência de antigas cisternas que posteriormente passam a constituir em sítios para depósitos de lixo ou pela própria rede coletora de esgoto. Portanto, a água para o abastecimento da cidade dependerá quase que totalmente, dos mananciais superficiais, os quais estão a exigir cuidados especiais relativos à recuperação, ao uso e a preservação (Diretoria de Geociências do IBGE op. cit.).

Segundo a Diretoria de Geociências do IBGE (op. cit.), a vegetação de Goiânia constitui-se principalmente de florestas, savanas arborizadas (cerrado) e áreas de
transição entre estas, dependendo do tipo de solo a que se relacionava. A ação antrópica gerou uma profunda modificação na vegetação natural sendo esta substituída, em maior parte, por pastagens e, em menor escala, por cultura cíclicas. Atualmente, as áreas florestadas restantes do município estão sendo devastadas por construções urbanas.

A bacia do ribeirão Anicuns possui grande importância ao sistema hidrográfico de Goiânia, pois está localizada inteiramente no município e é responsável pela drenagem da maior parte da água pluvial, fluvial e de esgotamento da área em questão. Os afluentes da margem direita são mais extensos, ressalta-se entre eles, os córregos Cavalo Morto, Salinas, Taquaral, Macambira, Cascavel e Botafogo. Os afluentes da margem esquerda possuem menor extensão, representam pequenos canais de escoamento de água pluvial. Além de receber as águas de seus afluentes, o ribeirão Anicuns acolhe as águas de escoamento laminar e concentrado das vertentes ou de pequenos tributários, formando assim, larga faixa de escoamento direto que acompanha seu curso (Diretoria de Geociências do IBGE *op. cit.*).

A bacia hidrográfica do ribeirão Anicuns possui uma área 231,7 Km², o que equivale a 30% do território do município. A urbanização dessa bacia é acentuada, principalmente na margem direita, de acordo com a IPLAN (1992) há 133.141 residentes nesta bacia.

A Figura 2 apresenta o município de Goiânia com sua respectiva rede hidrográfica a demarcação da bacia do ribeirão Anicuns e os municípios limítrofes.
Figura 2 – Município de Goiânia: rede hidrográfica, demarcação da bacia do ribeirão Anicuns e municípios limítrofes
Fonte: Diretoria de Geociências do IBGE – 1992
3. REVISÃO BIBLIOGRÁFICA

3.1. Classificação e Características Gerais dos Depósitos Tecnogênicos

Segundo Oliveira (1990), o período Quinário ou Tecnógeno teria iniciado há 10.000 anos, correspondendo a revolução neolítica, isto é, quando o homem conquista as primeiras técnicas de produção de alimentos, deixando sua fase de coletor, durante a qual não se destacava do conjunto de atividades biológicas nas suas relações com a natureza.

Oliveira (1990), afirma que o termo tecnogênico caracteriza uma vasta gama de depósitos formados como resultado da ação humana. Esta definição baseia-se em Chemekov (1982) e Ter Stepanian (1988). Segundo o autor poder-se ia classificá-los em três tipos principais: “construídos” (aterros, corpos de rejeito, etc.); “induzidos” (assoreamento, aluviões modernos, etc.); e “ modificados” (depósitos naturais alterados tecnogenicamente por efluentes, adubos, etc.).

De acordo com as atuais formas de uso e ocupação do solo e seus impactos, não será mais possível estudar os processos geológicos recentes sem considerar as profundas modificações que vêm sendo causadas pelo Homem (Oliveira 1994).

Fanning & Fanning (1989), classificam os solos altamente influenciados pelo homem. Sua classificação utiliza quatro categorias principais (diferenciadas com base principalmente na caracterização do material constituinte do depósito), são elas:

1. Materiais úrbicos – tratam-se de detritos urbanos, materiais terrosos que contêm artefatos manufaturados pelo homem moderno, frequentemente em fragmentos, como tijolos, vidro, concreto, asfalto, pregos, plásticos, metais diversos, pedra britada, cinzas e outros, provenientes, por exemplo, de detritos de demolição de edifícios.

2. Materiais gárbicos – são depósitos de material detritico com lixo orgânico, de origem humana e que, apesar de conterem artefatos em quantidade muito menores
que a dos materiais úrbicos, são suficientemente ricos em matéria orgânica para gerar metano em condições anaeróbicas.

A CPRM – Serviço Geológico do Brasil – denomina de “depósitos antropogênicos” os sambaquis, aterros, lixões e pilhas de rejeito, englobando-os na categoria de formações superficiais. Estas são entendidas como todos os sedimentos e coberturas residuais gerados no Cenozóico, isto é, materiais desenvolvidos in situ, aluviões, coluviões, formações de origem química, antrópica e lateritas, independentemente de sua espessura, desde que tenham expressão espacial geográfica significativa.

Sobre depósitos tecnogênicos construídos é importante ressaltar a conclusão de Peloggia (1998):

São englobados na categoria de “depósitos tecnogênicos construídos” aqueles depósitos resultantes do transporte e deposição de materiais por intermédio da ação direta do homem, e que restam no local onde foram criados (Peloggia, 1998, p. 129).

Segundo o autor, esses depósitos podem ser classificados de acordo com o material que os constituem: 1- em depósitos espólicos (sejam aterros compactados tecnologicamente controlados, as verdadeiras “obras de terra” da engenharia, ou mais raramente depósitos em “bota-fora”); 2- em depósitos úrbicos, predominantemente lançados em “bota-fora”, aterrando baixadas, fundos de vale ou predominantemente as porções côncavas do relevo, os morfológicos das cabeceiras de drenagem; ou então em aterros de material inerte; 3- em depósitos de material dragado, englobando por exemplo os depósitos de assoreamento de canais das drenagens principais, bem como tanques de decantação de resíduos minerários
finos; e em 4- depósitos gárboicos, sejam tecnologicamente controlados (aterros sanitários) ou simples “lixões”.

Dentre o aspecto relativamente amplo dos depósitos tecnogênicos urbanos, um tipo tem se destacado pela ampla ocorrência e, principalmente, pelo relacionamento à geração de situações de risco em áreas de precária ocupação, situações essas de porte limitado em geral, mas que nem por isso deixam de ter gravidade significativa: as “coberturas remobilizadas” (Pelloggia, 1998).

O termo coberturas remobilizadas foi utilizado por Pelloggia (1994), para descrever os capeamentos superficiais tecnogênicos, ricos em detritos e artefatos, freqüentemente encontrados em encostas de precária ocupação no Município de São Paulo, de origem diretamente relacionada à atividade humana. Segundo o autor, estes depósitos podem ser caracterizados como uma matriz de solos lançados e solos superficiais remobilizados que engloba entulhos e artefatos diversos (madeira, restos de construção civil e demolições, restos de pavimentos, bruta, ferro-velho) e lixo (sacos plásticos, restos de roupas, borracha, papel, matéria orgânica). De constituição extremamente heterogênea, apresentam espessuras observadas elevadas entre 1 e 7 metros.

Quanto as características geotécnicas das coberturas remobilizadas, Pelloggia (1994), descreve que estas, quando secam, apresentam comportamento rígido, e a resistência é relativamente alta; para isto provavelmente contribui o efeito dos restos de madeira, entulhos, plásticos e outros artefatos como elementos de ligação e reforço do solo ressecado, aumentando-lhe a resistência à tração. O autor nota ainda que, no entanto, esse comportamento é drasticamente modificado com o aumento do teor de umidade, quando o material apresenta amolecimento assume comportamento plástico ou mesmo de fluido viscoso em casos de saturação.

A ABNT (1987) classifica os resíduos, no tocante à natureza e origem, como residenciais, comerciais, públicos, domiciliares especiais e fontes especiais.

Desse modo, os resíduos residenciais são entendidos como aqueles gerados nas atividades diárias em casas, apartamentos, condomínios e demais edificações residenciais. Os comerciais são os resíduos gerados em estabelecimentos comerciais, cujas características dependem da atividade ali desenvolvida. Os públicos são os resíduos presentes nos logradouros públicos, como folhas, galhadas, partículas sólidas e aqueles descartados indevidamente pela população,
como entulho e bens considerados inservíveis, quais sejam, papéis, restos de embalagem e alimentos. Os resíduos domiciliares especiais consistem em entulhos de obras, pilhas e baterias, lâmpadas fluorescentes e pneus. Fontes especiais são os resíduos que são provenientes do lixo: industrial, radioativo, agrícola, de portos, aeroportos e terminais rodo-ferroviários. Aí também se incluem os resíduos de serviço de saúde (ABNT, 1987).

Os resíduos sólidos são materiais heterogêneos (inertes, minerais e orgânicos) resultantes das atividades humanas e da natureza, os quais podem ser parcialmente utilizados, gerando, entre outros aspectos, proteção à saúde pública e economia de recursos naturais. Os resíduos sólidos constituem problemas sanitários, econômico, e estético (ABNT, 1987).

De acordo com a Norma Brasileira (NBR) 10.004, os resíduos sólidos são classificados em três categorias, considerando os riscos potenciais de contaminação:

1. Resíduos Classe I: perigosos: resíduos sólidos ou mistura de resíduos que, em função de suas características de inflamabilidade, corrosidade, reatividade, toxicidade e patogenicidade, podem apresentar riscos à saúde pública, provocando ou contribuindo para uma aumento de mortalidade ou incidência de doenças e ou apresentar efeitos adversos ao meio ambiente, quando manuseados ou dispostos de forma inadequada.

2. Resíduos Classe II: não inertes: resíduos sólidos ou mistura de resíduos sólidos que não se enquadrar na Classe I (perigosos) ou na Classe III (inertes). Estes resíduos podem ter propriedades tais como: combustibilidade, biodegradabilidade, ou solubilidade em água.

3. Resíduos Classe III: inertes: resíduos sólidos ou mistura de resíduos sólidos que, submetidos a testes de solubilização não tenham nenhum de seus constituintes solubilizados, em concentrações superiores aos padrões: aspecto, cor, turbidez e sabor. Como exemplo destes materiais, podemos citar, rochas, tijolos, vidros e certos plásticos e borrachas que não são decompostos prontamente (ABNT, 1987).
3.2. Depósitos Tecnogênicos Construídos: Implicações Ambientais

A poluição do solo urbano é proveniente dos resíduos gerados pelas atividades econômicas que são típicas das cidades, como a indústria, o comércio e os serviços, além dos resíduos provenientes do grande número de residências presentes em áreas relativamente restritas. A maior parte dos resíduos urbanos é provenientes de áreas externas ao seu território (Braga et. al 2005).

De acordo com Fanning & Fanning (1989), os “solos criados pelo homem” que provavelmente causarão problemas no futuro são aqueles em que detritos orgânicos são soterrados. Depósitos nos quais materiais gárbicos são enterrados e podem dar lugar a inúmeros problemas, dentre os quais, os autores destacam a subsidências das superfícies dos terrenos; riscos de explosões em função da geração de metano e outros gases naturais sob condições anaeróbicas; contaminação das águas subterrâneas com substâncias químicas.

Os “lixões” a céu aberto constituem grave problema ao meio ambiente, à saúde e a suas interações. Alguns desses resíduos degradam-se facilmente em contato com as intempéries; outros, ao contrário, persistem por centenas de anos no meio ambiente, como mostra o quadro 1, que classifica os detritos encontrados em um depósito segundo sua decomposição no meio ambiente:

Quadro 1- Tipos de resíduos, características e tempo de decomposição

<table>
<thead>
<tr>
<th>DETRITOS</th>
<th>CARACTERÍSTICAS</th>
<th>DECOMPOSIÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papel</td>
<td>É um produto totalmente biodegradável</td>
<td>Pode levar meses ou décadas para sua decomposição,</td>
</tr>
<tr>
<td>Plásticos</td>
<td>Sua durabilidade e resistência à umidade e aos produtos químicos dificultam sua decomposição.</td>
<td>Pode levar séculos</td>
</tr>
</tbody>
</table>

Continua
<table>
<thead>
<tr>
<th>Material</th>
<th>Decomposição</th>
<th>Duração</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vidros</td>
<td>Devido sua decomposição química à base de sílica, ele não se oxida e nem os microorganismos conseguem digerí-lo.</td>
<td>Até 4000 anos</td>
</tr>
<tr>
<td>Metais ferrosos</td>
<td>Decompõem-se mais pela oxidação do que pela ação de microorganismos.</td>
<td>10 anos</td>
</tr>
<tr>
<td>Isopor</td>
<td>É biodegradável</td>
<td>08 anos</td>
</tr>
<tr>
<td>Tecidos</td>
<td>É capaz de se decompor pela ação de microorganismos vivos.</td>
<td>De seis meses a um ano</td>
</tr>
<tr>
<td>Ossos</td>
<td>Por ser de origem orgânica são de fácil decomposição, transformam-se em húmus.</td>
<td>01 ano</td>
</tr>
</tbody>
</table>

Fonte: Mota (2001)

Lima (1995), afirma que o impacto causado por determinados resíduos pode trazer consequências irreversíveis ao meio ambiente. Quanto ao lixo doméstico, sabe-se que materiais como pilhas de rádio são colocadas dentro de sacos de lixo, juntamente com outros resíduos, sem tomar devidos cuidados e as pilhas contêm mercúrio, elemento responsável por graves problemas de contaminação do homem e do meio ambiente. Esses elementos são absorvidos pelos organismos vivos e neles vão se acumulando de forma contínua durante toda a vida. Pela contaminação da terra ou da água, entra facilmente na cadeia alimentar, representando um perigo potencial para o homem que se alimenta de peixes ou aves das áreas vizinhas dos “lixões”. A ação tóxica do mercúrio afeta o sistema nervoso central provocando lesões no córtex e na capa granular do cérebro. São observadas alterações em órgãos do sistema cardiovascular, urogenital e endócrino, todavia, em caso de intoxicações severas, os danos são irreparáveis.

Barros (1999) ressalta que a decomposição do lixo com pouco ou nenhum oxigênio, contribui para a formação de gás metano, o que representa sérios riscos de incêndio nestas áreas. Lembra ainda que constantemente são derrubadas áreas
verdes para abrir espaço para a destinação do lixo urbano. Espaços estes, que se tornam degradados pela ação do homem.

3.2.1. Resíduos Perigosos

Os resíduos perigosos são classificados em biomédicos e químicos, segundo Braga et al (2005), os resíduos biomédicos, resíduos de hospitais, clínicas, laboratórios de pesquisa e companhias farmacêuticas apresentam comumente características patológicas e infecciosas. Como exemplo, cita-se:

- resíduos cirúrgicos e patológicos;
- animais usados para experiências e cadáveres;
- embalagens e resíduos químicos e de drogas;
- bandagens, panos e tecidos empregados em práticas médicas;
- utensílios usados tais como agulhas, seringas etc.
- equipamentos, alimentos e outros resíduos contaminados.

Para os autores, os resíduos químicos são produzidos principalmente pela atividade industrial e são utilizados, de modo direto ou indireto, por grande parcela da sociedade atual. A preocupação com relação a esses resíduos é relativamente recente, de maneira que a diminuição dos impactos resultantes dos empregos dessas substâncias ainda não é feita, em geral, de modo satisfatório. Teme-se que muitos dos problemas que têm sido detectados com relação a esse tipo de poluição representem apenas uma pequena parte de todos os problemas gerados no passado pelo mau uso e disposição de resíduos químicos tóxicos no meio ambiente.

Tais resíduos comumente são depositados no solo, lembrando que a disposição inadequada acaba poluindo o meio aquático subterrâneo e superficial. Consequentemente, a disposição de resíduos perigosos no solo por períodos relativamente longos tem produzidos efeitos deletérios nos aquíferos. Muitos deles, necessários para o abastecimento de populações ao redor do mundo, têm sido inutilizados dessa maneira (Braga et al, 2005).

3.3. Implicações na Saúde

Do ponto de vista sanitário, é preciso lembrar que a importância do lixo como causa direta de doenças não está comprovada, porém, como fator indireto, o lixo
tem grande importância na transmissão de doenças por meio de vetores, como moscas, mosquitos, baratas e roedores que encontram no lixo alimento, abrigo e condições adequadas para a proliferação. Os organismos patogênicos, em geral, são pouco resistentes às condições do meio exterior. O lixo, por conter o alto teor energético (água, abrigo e alimento), é usado por algumas espécies como nicho ecológico (Scarlatto & Pontin, 1992).

Os microvetores em contato com o ser humano podem transmitir doenças gastrointestinais, vermes e até doenças mais graves como a tuberculose.

O quadro 2 apresenta alguns microvetores, doenças e tempo de sobrevivência dos Agentes Patogênicos encontrados nos resíduos sólidos nos depósitos de lixo.

Quadro 2 – Microvetores, doenças e tempo de sobrevivência dos Agentes Patogênicos

<table>
<thead>
<tr>
<th>MICROVETOR</th>
<th>DOENÇA</th>
<th>DIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coliformes fecais</td>
<td>Gastroenterite</td>
<td>35</td>
</tr>
<tr>
<td>Leptospira</td>
<td>Leptospirose</td>
<td>15-43</td>
</tr>
<tr>
<td>Mycobacterium tuberculosis</td>
<td>Tuberculose</td>
<td>15-180</td>
</tr>
<tr>
<td>Áscaris lumbricóides</td>
<td>Ascaridiase</td>
<td>2000-2500</td>
</tr>
<tr>
<td>Endamoeba histolytica</td>
<td>Amebiase</td>
<td>8-12</td>
</tr>
</tbody>
</table>

Fonte: Brasil (2004)

Esses vetores em contato com o homem podem ser responsáveis pelo surgimento de doenças respiratórias, epidêmicas e intestinais. As baratas que pousam e vivem nos resíduos sólidos onde encontram líquidos fermentáveis, têm grande importância sanitária na transmissão de doenças gastrointestinais, pois, transportam bactérias e parasitas das imundícies para os alimentos e também eliminam fezes infectadas. Podem, ainda, transmitir doenças respiratórias e outras de contágio direto, pelo mesmo processo (Brasil 2004).

De acordo com Rodrigues & Cavinatto (2003), na natureza, existe uma pequena porcentagem de micróbios que, para sobreviver, necessitam habitar o
corpo dos seres vivos, homens, animais e plantas. Nesse grupo estão incluídos alguns germes, chamados patogênicos, capazes de provocar doenças. As pessoas que abrigam micróbios patogênicos, constantemente os eliminam no ambiente através de suas excreções e secreções.

Esses seres patogênicos circulam pelo sangue do hospedeiro e contaminam agulhas, curativos e absorventes femininos. Dessa forma, papéis higiênicos, fraldas descartáveis e todo material contaminado que é descartado nas lixeiras de casas, farmácias, hospitais etc. chegam aos depósitos de lixo da cidade, transportando germes que provocam doenças. Os germes patogênicos não surgem espontaneamente nos montes de lixo, eles só aparecem associados a materiais eliminados por pessoas ou animais portadores de doenças contagiosas. Ao contrário de seus parentes decompositores, que vivem e se reproduzem nos detritos, os germes não se alimentam de resto de comida. O tempo de vida deles no meio ambiente é curto, pois a luz, o oxigênio e falta de umidade são fatores agressivos que provocam sua morte. Para completar o ciclo de vida e perpetuar a espécie, os germes patogênicos têm de encontrar outro hospedeiro e isso fica mais fácil onde há falta de higiene e limpeza.

O homem que vive em contato direto e frequentemente com o lixo fica permanentemente exposto aos germes, aumentando suas chances de contrair doenças, dentre as quais se pode destacar diarreias, intoxicações e verminoses. Porém, mesmo vivendo distante dos resíduos, as pessoas podem ser contaminadas de várias maneiras. Isso ocorre porque o solo e a água servem como veículo de disseminação dos micróbios, se o lixo permanecer descoberto, a chuva leva a sujeira para córregos e rios, espalhando esses minúsculos seres por toda parte; ao mesmo tempo, o chorume formado nos montes de resíduos arrasta os germes pelo subsolo, contaminando as águas de poços domésticos, através do lençol subterrâneo. Além disso, a quantidade de alimentos existentes no lixo atrai numerosa diversidade de insetos e animais que estão à procura de comida. Os germes podem ser transportados por insetos a longas distâncias (Rodrigues & Cavinato, 2003).

Esses insetos viajam muitos metros, partindo de um depósito de lixo, de um matadouro, de uma granja, de um estábulo ou de um chiqueiro; ou então acabaram de chegar da lata de lixo, enfim qualquer terreno que acumule lixo, esterco ou restos orgânicos é um local adequado para eles se reproduzirem. Uma única mosca pode
abrigar mais de cem espécies diferentes de micróbios, entre os quais bactérias que provocam diarréias, vírus causadores da hepatite, além de ovos de vermes, bem como protozoários, entre os quais giardias e amebas, que se desenvolvem como parasitas no intestino do homem.

Os mosquitos proliferam em ambientes aquáticos, sendo encontrados em depósitos de lixo onde existem latas, vidros, pneus e outros recipientes com água estancada (Rodrigues & Cavinatto, 2003).

As baratas são insetos que encontramos com facilidade e em grande quantidade nos detritos e entulhos, geralmente agem durante a noite, transitam com muita facilidade dos montes de lixo e esgotos para as casas. As baratas são o alimento preferido dos escorpiões, o lixo espalhado no ambiente pode contribuir indiretamente para a proliferação desses animais venenosos, como já está ocorrendo em Belo Horizonte, Maceió, São Paulo e em outras cidades brasileiras (Brasil 2004).

Quanto aos vetores, Telarolli (1995) afirma:

Alguns micróbios precisam do “auxílio” de outro ser vivo que atua como um vetor, para serem transmitidos de uma pessoa a outra. Vetores são insetos que “dão carona” ao microorganismo causador da doença, transportando-o do corpo do doente para o sadio, eles têm um papel importante na ocorrência de epidemias (Telarolli, 1995, p. 13).

A presença dos ratos nos depósitos de lixo, também é outro fator preocupante. Durante a Idade Média, mas exatamente entre os anos de 1340 a 1360 d.C. cerca de um quarto da população européia morreu em conseqüência da Peste Bubônica, também chamada de Peste Negra, transmitida pela pulga dos ratos. Naquela época, por falta de informação, o lixo das casas era simplesmente jogado nas ruas, o que favorecia a proliferação de roedores, que circulavam por toda cidade. Felizmente essa doença está erradicada, mas na Índia, recentemente, surgiu um outro tipo de epidemia chamada peste pneumônica, muito grave, também causada pela pulga do rato. A peste apareceu nas favelas de uma cidade chamada Surat, que disputa o título de ser a mais suja da Índia (Telarolli, 1995).

No Brasil, os ratos são ainda responsáveis por diversas moléstias. A mais comum é a Leptospirose, transmitida por bactérias que parasitam esses roedores, e que são eliminadas pela sua urina, contaminando o ambiente. A bactéria que causa

Segundo Rodrigues & Cavinatto (2003), outro fator que preocupa são os animais domésticos, Sabe-se que a riqueza de alimentos existente no lixo produzido no Brasil ainda hoje é usada em grande parte como lavagem destinada à engorda de porcos, tanto no interior quanto nas grandes cidades. O fornecimento é garantido por caminhões que passam nos restaurante e supermercados especificamente para recolher as sobras. O problema é que esses resíduos são entregues sem qualquer controle sanitário, muitas vezes estragados e contaminados, prejudicando os animais e possibilitando a transmissão de doenças como Febre Aftosa e Peste Suína. Também é uma prática comum nos interiores, os porcos serem criados diretamente nos depósitos de lixo, até mesmo nos que recebem resíduos provenientes de hospitais, acarretando riscos ainda maiores à saúde pública.

O quadro 3 apresenta alguns vetores, formas de transmissão e enfermidades relacionadas com os resíduos sólidos.

Quadro 3 – Vetores, formas de transmissão e enfermidades

<table>
<thead>
<tr>
<th>VETORES</th>
<th>FORMAS DE TRANSMISSÃO</th>
<th>ENFERMIDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratos e pulgas</td>
<td>Mordida, urina, fezes e picadas</td>
<td>Leptospirose, Peste Bubônica e Tifo</td>
</tr>
<tr>
<td>Mosca</td>
<td>Asas, patas, corpo, fezes e saliva</td>
<td>Febre tifoíde, Cólera Amebiase, Giardíase e Arcardáse</td>
</tr>
<tr>
<td>Mosquito</td>
<td>Picada</td>
<td>Malária, Febre Amarela, Dengue e Leishmaniose</td>
</tr>
<tr>
<td>Barata</td>
<td>Asas, pata, corpo e fezes</td>
<td>Febre tifoíde, Cólera e Giardíase</td>
</tr>
<tr>
<td>Cão e gato</td>
<td>Urina e fezes</td>
<td>Toxoplasmose</td>
</tr>
</tbody>
</table>

Fonte: Brasil (2004)

Telarolli (1995) apresenta em sua obra algumas doenças transmissíveis que a ciência já dispõe de conhecimentos que permitem o controle ou a erradicação, são as chamadas doenças reemergentes. Porém estas doenças retornaram quase cem anos depois de serem erradicadas no Brasil estando intimamente ligadas a falta de saneamento básico. Uma das doenças abordadas pelo autor é o Coléra.
No Sudeste a epidemia de cólera não fez tantas vítimas porque as melhores condições de saneamento básico dos estados da região funcionou como barreira natural contra a doença. Na maioria das cidades do Sudeste a população dispõe de água encanada e coleta de esgoto, ao contrário do Norte e nordeste. Quase todos os casos da Região Sudeste ocorrem justamente naqueles locais onde as condições de higiene e saneamento são piores, como a periferia e as favelas das grandes cidades (Telarolli, 1995 p. 58).

Pignatti (2004), afirma que a Febre Amarela e o Dengue estão fortemente associadas com a densidade e dispersão dos vetores. A forma de organização do espaço dos centros urbanos, o modo de vida de suas populações e os seus reflexos no ambiente assim como a produção de materiais descartáveis, a negligência com o lixo e o aumento de recipientes que acumulam água nos recipientes humanos criam as condições para a proliferação dos vetores. A autora faz uma relação entre a debelação de um surto epidêmico e as péssimas condições de saneamento básico, como pelo próprio adensamento populacional. Para ela, é mais difícil controlar o surto nas periferias da cidade.

Roitt (1999), afirma que a leishmaniose é uma doença causada por um protozoário (microorganismo) denominado *Leishmania*. Em algumas regiões também é conhecida por "doença de Bauru". Ela acomete cães, canídeos (lobos), roedores silvestres e o homem. Raramente os gatos são afetados. A transmissão ocorre através da picada de insetos específicos (*Lutzomyia longipalpis*) conhecidos no Brasil como mosquito-palha, birigüí e outros.

Além de todas essas enfermidades que estão intimamente ligadas a falta de saneamento básico e mau gerenciamento dos resíduos sólidos, existem ainda outros danos a saúde relacionados a outros tipos de resíduos.

Braga *et al* (2005), apresentam os resíduos orgânicos persistentes, ou seja, aqueles de lenta degradação, que trazem grande preocupação aos estudiosos, principalmente aqueles que podem sofrer bioacumulação. Pesticidas, são exemplos típicos, cuja presença pode causar efeitos tóxicos agudos ou de longo prazo por serem carcinogênicos e mutagênicos. Muitos poluentes persistentes são formados pela queima de compostos clorados ou como subprodutos de fabricação ou degradação de determinadas substâncias. Um exemplo, as dióxinas são um grupo de substâncias que resultam como subprodutos da fabricação ou queima de clorofenóis.
Os autores lembram ainda que muitos resíduos químicos inorgânicos, como alguns compostos de mercúrio, chumbo, cádmio, arsênio são tóxicos, mesmo em baixas concentrações. Tais compostos também podem ser bioacumulados nas cadeias alimentares e atingir concentrações nocivas para os seres humanos e outros organismos.

3.4. O Que Fazer Com o Lixo Produzido Pelo Homem?

Scarlato & Pontin (1992), afirmam que cada habitante é capaz de produzir 0,8 kg/dia de lixo, o que significa que uma cidade como São Paulo, adicionando o lixo industrial, gera cifras de 12 mil t/dia.

O lixo industrial e doméstico se enquadra no sentido mais abrangente de poluição, mas analisando sob diversos aspectos, pode também ser visto como um problema social ou, pelo menos um paliativo para vários outros problemas. Depende-se de como ele é tratado. A recuperação de produtos como papel, plásticos, metais e outros por meio de reciclagem, além de amenizar significativamente o impacto que os resíduos causam ao ambiente, pode se constituir numa alternativa a ser explorada diante do esgotamento de recursos não renováveis. Pode-se também obter retorno financeiro. Por fim, certas técnicas de tratamento do lixo permitem, entre outras coisas, obter energia (Scarlatto & Pontin, 1992).

3.4.1. Destinação do Lixo

Para Scarlato & Pontim (op. cit.) a opção por uma ou pela combinação de duas ou mais técnicas de tratamento do lixo urbano vai depender da composição do lixo e da política desenvolvida pelas autoridades sanitárias da região.

Quadro 4 – Técnicas de destinação do lixo, vantagens e desvantagens.

<table>
<thead>
<tr>
<th>Técnica</th>
<th>Vantagens</th>
<th>Desvantagens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aterro Sanitário</td>
<td>• Respeitadas as rigorosas normas de instalação e funcionamento constitui uma técnica ambientalmente confiável.</td>
<td>• Comprometimento físico de áreas extensas.</td>
</tr>
</tbody>
</table>

continua
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baixo custo operacional.</td>
<td></td>
<td>Se não for rigorosamente administrado, o aterro pode transformar-se num foco e difundir todo tipo de organismos patogênicos.</td>
</tr>
<tr>
<td>Incineração</td>
<td>Reduz significativamente o volume original.</td>
<td>A heterogeneidade do lixo pode causar problemas ao incinerador.</td>
</tr>
<tr>
<td></td>
<td>Produz um resíduo sólido estéril.</td>
<td>Pode tornar uma fonte de poluição do ar.</td>
</tr>
<tr>
<td></td>
<td>Processo higiénico quanto a proliferação de organismos patogênicos.</td>
<td>Sem separação do lixo, há desperdício de materiais.</td>
</tr>
<tr>
<td></td>
<td>Apropriado para lixo hospitalar.</td>
<td></td>
</tr>
<tr>
<td>Compostagem</td>
<td>Reduz o volume de lixo.</td>
<td>Relativa a outras técnicas há uma baixa taxa (velocidade) de processamento.</td>
</tr>
<tr>
<td></td>
<td>O produto final (composto) pode ser usado como adubo e como cobertura de aterros sanitários.</td>
<td>Emissão de gases mal cheirosos para a atmosfera.</td>
</tr>
<tr>
<td></td>
<td>Obrigatoriedade há uma classificação do lixo, podendo esta se constituir uma fonte de renda.</td>
<td></td>
</tr>
<tr>
<td>Reciclagem</td>
<td>Minimização do impacto ambiental.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reaproveitamento de diversos materiais.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>----</td>
</tr>
</tbody>
</table>

Fonte: Scarlato & Pontim 1992

James (1997) chama a atenção ao acondicionamento do lixo, segundo ele, este é de responsabilidade direta da população, de forma que, se mostrar inadequado ou impróprio, pode instigar a proliferação, sobretudo, de moscas, ratos e baratas.

O autor apresenta várias formas de acondicionar os resíduos sólidos, segundo ele os resíduos domiciliares e comerciais podem ser acondicionados em recipiente plásticos e metálicos; os resíduos de varrição em sacos plásticos, basculantes e contêineres; nas feiras livres pode se utilizar de contêineres e tambores;
Segundo Braga et al (2005), os resíduos hospitalares são, ou devem ser, incinerados no próprio local. As cinzas resultantes desse processo são dispostas em aterro sanitário. Caso essa incineração não seja efetuada, a disposição de tais resíduos é efetuada em aterros, sofrendo um processo de tratamento anterior à disposição final. Deve se cuidar para evitar a disposição desses resíduos de forma inadequada na rede pública de esgotos sanitários, evitando, dessa forma, atingir os corpos de água utilizados, de alguma maneira pela população.

Conforme Lipor (2000), a gestão dos resíduos sólidos não tem tido a atenção necessária do poder público. Com isso, compromete-se cada vez mais a saúde pública e os recursos naturais, sobretudo o solo e os recursos hídricos. Como o meio ambiente, a saúde e os saneamentos estão implicitamente interligados, reforça-se a necessidade de integrar as ações desses setores para melhorar a qualidade de vida da população brasileira.

3.5. Legislação

Brasil (1988), em seus artigos 20, 23, 24, 30, 129 e 200, tece considerações acerca dos resíduos sólidos. Contudo, as instituições responsáveis pelos resíduos sólidos municipais e perigosos, no âmbito nacional, estadual e municipal, são especificadas nos seguintes artigos da Constituição Federal: nos incisos VI e XIX do artigo 23, que atribuem a União, aos estados ao Distrito Federal e aos municípios a proteção ao meio ambiente e o combate à poluição em qualquer forma, bem como a promoção de programas de construção de moradias e a melhoria do saneamento básico. Os incisos I e V do artigo 30 atribuem ao município legislar sobre assuntos de interesse local, sobretudo no tocante à organização dos seus serviços públicos, bem como a limpeza urbana.

O Congresso Nacional aprovou, depois de quase onze anos de tramitação, a Lei n° 10.257, mais conhecida como Estatuto da Cidade. Esta Lei, que está em vigor desde 10 de outubro de 2001, estabelece as diretrizes gerais da política urbana objetivando principalmente o pleno desenvolvimento das funções sociais da cidade e a garantia ao direito a cidades sustentáveis.
A cidade é fruto do trabalho coletivo de uma sociedade. Nela está materializada a história de um povo, suas relações sociais, políticas, econômicas e religiosas. Sua existência ao longo do tempo é determinada pela necessidade humana de se agregar, de se inter-relacionar, de se organizar em torno do bem estar comum; de produzir e trocar bens e serviços; de criar cultura e arte; de manifestar sentimentos e anseios que só se concretizam na diversidade que a vida urbana proporciona (Brasil 2002, p. 15).

Brasil (2002) apresenta alguns pressupostos para a constituição de uma nova ordem legal urbana, destinada a legalizar e urbanizar as áreas consolidadas e ocupadas por população de baixa renda, tendo o direito à moradia como elemento essencial:

1. O direito a cidades sustentáveis – entendido como o direito aos meios de subsistência, à moradia, ao saneamento, à saúde, à educação, ao transporte público, à alimentação, ao trabalho, ao lazer e à informação. Inclui também o direito a liberdade de organização, o respeito às minorias e a pluralidade étnica, sexual e cultural, o respeito aos imigrantes e o reconhecimento de sua plena cidadania, a preservação da herança histórica e cultural e o direito ao usufruto de um espaço culturalmente rico e diversificado, sem distinções de gênero, nação, raça, linguagem e crenças e ao meio ambiente ecologicamente equilibrado;

2. O desenvolvimento urbano ambientalmente sustentável – voltado a garantir articulação das dimensões ambiental e social, e a sua integração ao conjunto das políticas e planos para a cidade, assegurando o acesso democrático aos recursos ambientais e paisagísticos, e promovendo uma efetiva melhoria da qualidade de vida;

3. A gestão democrática da cidade – entendida como forma de planejar, produzir, operar e governar as cidades e povoados, garantindo o acesso à informação, à participação, ao controle social sobre os processos decisórios em vários campos e ao fortalecimento do poder local;

4. A garantia das funções sociais da cidade e da propriedade – entendida como a prevalência do interesse comum sobre o direito individual de propriedade, como o uso socialmente justo do espaço urbano que os cidadãos se apropriem do
território, democratizando seus espaços de poder, de produção e de cultura dentro
dos parâmetros de justiça social e da criação de condições ambientalmente
sustentáveis.

Com relação ao solo urbano, destaca-se a Lei nº 10.257, de 10 de julho de
2001, que regulamenta os artigos 182 e 183 da Constituição Federal, estabelecendo
as diretrizes gerais da política urbana. Entre as diretrizes gerais dessa lei,
estabelecidas no artigo 2º, devem ser destacadas: Ordenação e controle do uso do
solo, de forma a evitar a utilização inadequada dos imóveis urbanos; a aproximação
de usos incompatíveis ou inconvenientes; o parcelamento do solo, a edificação ou
uso excessivo ou inadequado em relação à infra-estrutura urbana; a instalação de
empreendimentos ou atividades que possam funcionar como pólos geradores de
tráfego, sem a previsão da infra-estrutura correspondente; a retenção especulativa
de imóvel urbano, que resulte na sua subutilização ou não utilização; a deterioração
das áreas urbanizadas; a poluição e a degradação ambiental.

A situação brasileira relacionada aos resíduos sólidos ainda desperta
preocupação, pois, ao contrário do que ocorre para o meio atmosférico e aquático,
ainda não dispomos de uma Política Nacional que trate desse tema de maneira
integrada e devido a essa falta de integração, surgem brechas que acabam servindo
de justificativas para muitos infratores.

Braga et al (2005), apresentam alguns projetos que estavam em tramitação
no Congresso Nacional:

O Projeto de Lei nº 203/1991 com 69 apensamentos, para instituir a Política
Nacional de Resíduos Sólidos, ainda aguarda encaminhamento. Já no Senado
Federal tramita o Projeto de Lei nº 265/1999, que institui a Política Nacional de
Resíduos Sólidos e dá outras providências, o qual foi encaminhado para análise na
Comissão de Constituição, Justiça e Cidadania em 10/07/2003, pronto para pauta.

Ambos projetos procuram incorporar princípios avançados com relação à
gestão dos resíduos sólidos, destacando-se os seguintes: prevenção da poluição ou
redução da geração de resíduos na fonte; minimização dos resíduos; recuperação
de materiais ou de energia dos resíduos ou produtos descartados; tratamento dos
resíduos; disposição final dos resíduos remanescentes; recuperação das áreas
degradadas pela disposição inadequada de resíduos.

O CONAMA avançou muito na questão sobre regulamentação associada aos
resíduos sólidos e passou a editar resoluções que incorporam mecanismos de
gestão avançados. Por exemplo. A resolução CONAMA nº 257, de 30/06/1999, trata dos procedimentos para a reutilização, reciclagem, tratamento ou disposição final de pilhas e baterias, atribuindo aos fabricantes ou importadores a responsabilidade para que tais procedimentos sejam viabilizados. Outra resolução do CONAMA que incorpora o conceito de responsabilidade pós-consumo é a de nº 258 de 26/08/1999, que atribui aos fabricantes e importadores a responsabilidade pela coleta e destinação de pneus inservíveis (Braga et al, op. cit.).

Um dos instrumentos legais que ganhou bastante destaque dentro do conjunto de normas para o controle da qualidade ambiental foi a Lei nº 9.605, de 12 de fevereiro de 1998, que dispõe sobre as sanções penais e administrativas derivadas de condutas lesivas ao meio ambiente e dá outras providências, a qual passou a ser conhecida como Lei de Crimes Ambientais.

Braga et al (op. cit.), informa que a Lei nº 9605 foi sancionada com dez vetos e é composta por 82 artigos distribuídos em oito capítulos, nos quais são definidos os crimes ambientais relacionados à degradação do meio ambiente, as respectivas penas e critérios para aplicação dessas, além de apresentar os conceitos relacionados à infração administrativa e a cooperação internacional para preservação do meio ambiente.

Não obstante a importância da Lei de Crimes Ambientais como um todo, merece atenção especial o Capítulo V, Dos Crimes contra o Meio Ambiente, que na Seção III, artigo 54, define que crime é causar poluição de qualquer natureza em níveis tais que resultem ou possam resultar em danos a saúde humana, ou que provoquem mortalidade de animais ou a destruição significativa da flora. A pena para este tipo de crime é reclusão de um a quatro anos e multa. Se o crime é culposo, a pena será detenção de seis meses a um ano e multa.

Se o crime tornar uma área, urbana ou rural imprópria para a ocupação humana; causar poluição atmosférica que provoque a retirada, ainda que momentânea, dos habitantes das áreas afetadas, ou que cause danos diretos à saúde da população; causar poluição hídrica que torne necessária a interrupção do abastecimento público de água de uma comunidade; dificultar ou impedir o uso público de praias; ocorrer por lançamento de resíduos sólidos, líquidos ou gasosos, ou detritos, óleos ou substâncias oleosas em desacordo com as exigências estabelecidas em leis ou regulamentos, a pena será reclusão de um a cinco anos.
Além dos infratores acima descritos, também serão sujeitos passivos das penas previstas no parágrafo anterior quem deixar de adotar, quando assim o exigir a autoridade competente, medidas de precaução em caso de risco de dano ambiental grave ou irreversible.

3.6. Ação biológica dos elementos químicos

Quase todos os metais do planeta são de ocorrência natural, no entanto, opções para descarte de resíduos têm sido acompanhadas pela preocupação com a disseminação de elementos metálicos indesejáveis que podem comprometer a qualidade dos ecossistemas e a saúde humana.

Os poluentes mais tóxicos que ocorrem em solos estão sob a designação de “metais pesados”, termo utilizado para identificar um grupo de elementos que possui número atômico maior que 20 (Marques et al 2002).

Sabe-se que alguns elementos químicos são essenciais à saúde dos seres vivos como cálcio, ferro, potássio etc. Outros como mercúrio, chumbo, bário, cádmio do ponto de vista biológico são considerados muito tóxicos quando estão presentes no meio ambiente, mesmo em baixas concentrações, pois são acumulativos nos organismos dos homens e dos animais (Marques et al op. cit.).

A contaminação dos solos pelas atividades antropogênicas é uma realidade que traz preocupações. Isto porque depois que o solo perde sua capacidade produtiva, em função da contaminação, a sua recuperação é de difícil execução e, se esta for possível, através da intervenção humana, o tempo para que se atinja o objetivo de recuperação é demasiadamente longo. Além disso, se ocorrer contaminação de seres humanos as implicações são catastróficas.

É possível estabelecer correlações entre a incidência de doenças endêmicas e o excesso ou deficiência dos elementos químicos. Observe o quadro 5:

<table>
<thead>
<tr>
<th>Quadro 5 – Elementos e substâncias químicas no meio ambiente e a saúde humana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variável</td>
</tr>
<tr>
<td>Alumínio</td>
</tr>
</tbody>
</table>

continua
<table>
<thead>
<tr>
<th>Metal</th>
<th>Efeitos saúde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bário</td>
<td>Concentrações de bário acima de 550mg ou 600mg são fatais ao homem, causa bloqueio nervoso ou aumento da pressão sanguínea.</td>
</tr>
<tr>
<td>Cádmio</td>
<td>É altamente tóxico, podendo causar osteomacia, calcificação nos rins, deformação óssea e disfunção renal, também câncer, doenças cardiovasculares, retardamento de crescimento e retardamento de crescimento e morte.</td>
</tr>
<tr>
<td>Chumbo</td>
<td>É muito tóxico, pode ser letal se ingerido por muito tempo, pode causar danos irreversíveis ao cérebro, principalmente em crianças, hiperatividade, retardamento de crescimento, anemia e tumores renais.</td>
</tr>
<tr>
<td>Cobre</td>
<td>Quando presentes em altas concentrações, o cobre pode custar danos ao fígado, rins e ao cérebro.</td>
</tr>
<tr>
<td>Cromo</td>
<td>É importante para o metabolismo dos açúcares, sua deficiência no organismo humano pode levar a neuropatia periférica e diabetes, porém o cromo hexavalente em altas concentrações pode causar câncer.</td>
</tr>
<tr>
<td>Ferro</td>
<td>O ferro forma as enzimas e atua na atividade respiratória e nos processos biológicos. A deficiência de ferro no organismo pode causar anemia e o excesso prejudica na absorção de outros metais. Quando associado ao manganês pode causar mal de Parkinson.</td>
</tr>
<tr>
<td>Manganês</td>
<td>É parte integrante dos ossos e cartilagens e fator essencial nas reações enzimáticas, nos metabolismos protéicos, lipídico e glucídico, altos teores no meio ambiente pode causar alucinações e demências.</td>
</tr>
<tr>
<td>Níquel</td>
<td>Quando presente em altas concentrações no meio ambiente pode causar câncer no trato respiratório e dermatite de contato.</td>
</tr>
<tr>
<td>Zinco</td>
<td>É essencial na saúde humana, sua deficiência pode causar dermatite e nanismo. Porém altos teores de zinco no organismo pode causar problemas circulatórios, pulmonares e de concentração mental.</td>
</tr>
</tbody>
</table>

FONTE: Cunha *et al* 2001; Melo & Vasconcelos 1998

Para as plantas, a falta de cálcio, o aumento da acidez e o excesso de alumínio resultam em baixo crescimento do sistema radicular, com conseqüente exploração de pequenos volumes de solo, levando a baixa captação de nutrientes e água, tornando as culturas sujeitas a deficiências minerais e susceptíveis à déficits hídricos (Melo & Vasconcelos, 1998).
A correção da acidez e da falta de cálcio, necessária para aumentar a produtividade de solos ácidos, tem sido feita pela adição de materiais corretivos, principalmente calcários. Entretanto, como estes corretivos se solubilizam lentamente e são incorporados superficialmente, a correção normalmente se restringe à superfície, limitando o crescimento das raízes à camada de aplicação. (Pavan et al 1982; Rajj 1989). O excesso de alumínio inibe o crescimento normal de raízes, tornando-as engrossadas, com coloração marrom, menos ramificada, quebradiça e ocasionalmente com manchas necróticas (Foy, 1992).

Estas são algumas das implicações causadas aos seres vivos pelo excesso ou carência dos elementos químicos. Percebe-se que o equilíbrio, isto é a dosagem certa faz grande diferença nos organismos. A dose correta diferencia um veneno e um medicamento (Selenius et al, 2004). A carência ou o aumento da concentração de elementos essenciais podem causar efeitos biológicos negativos. Os ambientes que configuram situações de risco mais marcantes para a saúde e qualidade de vida são aqueles que foram modificados pelo homem (Pascalichio, 2002).

É imprescindível que os solos sejam tratados cuidadosamente de modo a aumentar a sua sustentabilidade para as futuras gerações. O solo não é só um componente, mas sim a base dos ecossistemas (Alloway, 1990).
4. MÉTODOS E TÉCNICAS

4.1. Campo

Inicialmente fez-se o percorrido da área de pesquisa para identificação e cadastramento de alguns depósitos tecnogênicos construídos e plotagem na carta topográfica. Fez-se também a caracterização preliminar dos depósitos, registros fotográficos e obtenção das coordenadas geográficas com o GPS.

Na etapa seguinte foram escolhidos 4 (quatro) dos 19 (dezenove) depósitos para detalhamento, onde foram utilizados os seguintes procedimentos:

- Coleta de amostras de solo do depósito – utilizou-se uma cavadeira tipo boca de lobo. (Figura 3);

![Figura 3 – Coleta de amostras de solo. Data: 04/10/2006. Foto: Fernanda Ramos Syriaco](image)

- Dimensionamento dos depósitos tecnogênicos – utilizou-se uma trena de 30m (Figura 4);

- Quantificação dos rejeitos encontrados, classificando-os quanto à origem. A quantificação foi realizada por estimativa, através do percorrido do depósito (Figura 50); Este método foi criado pelo grupo que participava da pesquisa.
4.2. Gabinete

Em gabinete foram realizadas pesquisas bibliográficas; analisados os 19 depósitos identificados inicialmente, escolhendo-se 4 para o detalhamento; quantificação dos rejeitos constituintes; construção dos gráficos demonstrativos; plotagem dos depósitos na imagem de satélite; confecção do sumário estatístico e resultados analíticos; construção da matriz de correlação; interação dos resultados e confecção da dissertação; encaminhamento das amostras de solo para análise de elementos no laboratório da Universidade Católica de Brasília.

Foram selecionados 4 depósitos para detalhamento em função da disponibilidade de recursos financeiros para as análises. A proposta inicial era de analisar 50% dos depósitos.

4.3. Laboratório

As amostras de solo foram enviadas para o laboratório da UCB (Universidade Católica de Brasília), para análise de metais pesados. A metodologia utilizada pela UCB foi a seguinte: as amostras de solo foram secas a temperatura ambiente; em
seguida se retiraram as folhas, galhos, pedras e outros das amostras. As mesmas foram homogeneizadas com auxílio de almofariz e pistilo. Em seguida pesou-se 0,5g de solo em tubo digestor, adicionou-se a este 2,3ml de ácido nítrico e 6,9ml de ácido clorídrico; para posterior digestão em bloco digestor. Após a digestão avolumou-se para 50ml com água desionizada.
5. RESULTADOS

Os trabalhos de campo realizados na bacia do ribeirão Anicuns permitiram a identificação de 19 (dezenove) depósitos tecnogênicos construídos (D.T.C.), caracterizados abaixo (Figuras 6 a 40). A imagem satélite da figura 5 (EM ANEXO) apresenta a área de estudo e os depósitos tecnogênicos construídos cadastrados.

D.T.C. 1 – Localiza-se no Setor São José, coordenadas geográficas 672114E e 8153974N. Depósito situado ao longo da avenida, contendo principalmente restos de construção civil, plásticos, papéis, tecidos e lixo doméstico (Figuras 6 e 7).

Figura 6 – Vista geral do D.T.C. 1. Data: 04/10/2006 Foto: Julio Cezar Rubin de Rubin
D.T.C. 2 - Depósito tecnogênico construído situado no Setor Parque Industrial, à Avenida Francisco Alves de Oliveira, coordenadas geográficas 674972E e 8154612N. Depósito situado em um lote vazio, contendo principalmente materiais gárbicos e úrbicos. Presença também de frascos vazios de remédios (Figuras 8 e 9).

D.T.C. 3 - Depósito tecnogênico construído situado no Setor Solange Parque II à Rua Luciano Capuzzo, coordenadas geográficas 675670E e 8152016N. Depósito encontrado em vertentes de média declividade com pequenas erosões. Presença de animais mortos, sacos plásticos e papelão (Figura 10).

D.T.C. 4 - Depósito tecnogênico construído situado no Setor Solange Parque I à Avenida Gabriel Henrique de Araújo coordenadas geográficas 676211E e 8152804N. Depósito localizado a 18m a montante do córrego Itaquerai contendo resíduos de construção civil, plásticos e papéis. O depósito está coberto por vegetação rasteira e mamoneiras (Figuras 11 e 12).

D.T.C. 5 - Depósito tecnogênico construído situado no Setor Carolina Parque Extensão, próximo ao Córrego Cavalo Morto, coordenadas geográficas 674287E e 8153908N. Foto obtida da margem oposta, uns 200m de distância, uma vez que os proprietários não permitiram a entrada da equipe (Figura 13).

D.T.C. 6 - Depósito tecnogênico no Condomínio Anhanguera à margem da Rua 1, próximo a Rua Francisco Alves Fortes, coordenadas geográficas 675007E e 8151919N. Depósito com presença de restos de animais e ossos, o que justifica a presença de urubus e o mau cheiro. A composição do depósito é de resíduos de construção civil, plásticos, estofados, britas, vidros, papéis, madeiras, papelão e pneus, além de solo remobilizado (Figuras 14 e 15).

D.T.C. 7- Depósito tecnogênico no Setor Parque Santa Rita às margens da rodovia do Anel viário, próximo ao Córrego Itaquiral, coordenadas geográficas 675378E e 8150687N. Depósito contendo resíduos de construção civil, além de pneus, vidros, descartáveis madeira, papéis, restos de animais mortos e ossos (Figuras 16 e 17).

D.T.C. 8 - Depósito tecnogênico construído no Setor Faiçalville à Avenida Pedro I, coordenadas geográficas 0679091E e 8148958N. Depósito com presença de lixo doméstico, restos de comida, plásticos, papéis e principalmente restos de animais mortos, o que atrai grande número de urubus (Figuras 18 e 19).

D.T.C. 9 - Depósito tecnogênico construído no Setor Novo Horizonte à Alameda das Palmeiras com Avenida Maurício G. Ribeiro, coordenadas geográficas 679647E e 8151143N. Depósito localizado junto a uma residência a jusante da erosão. Há predominância de papéis, plásticos e resíduos de construção civil (Figura 20).

![Figura 20 – D.T.C. 9 Depósito localizado junto a uma residência. Data: 07/10/2006 Foto: Elizabeth Soares da Silva](image)

D.T.C. 10 - Depósito tecnogênico construído no Setor Parque Oeste Industrial, paralelo à Rua dos Cravos esquina com Av. Pedro Ludovico, coordenadas geográficas 678994E e 8153808N. O Depósito situa-se nos dois lados da rua, contendo principalmente ferro velho, sacos de plásticos, peças de plásticos e de ferro. Há sinais de queima no local (Figuras 21 e 22).

D.T.C. 11 - Depósito tecnogênico construído, à Rua C 107 esquina com a T9, próximo ao Carrefour junto à margem do Córrego Cascavel, coordenadas geográficas 681768E e 8151891N. Depósito, contendo muito lixo orgânico (restos de animais mortos, ossos e lixo doméstico), além de restos de restos de construção civil, tecidos, madeira, frascos de remédios cheios e vazios, seringas descartáveis utilizadas e pneus (Figuras 23 e 24).

D.T.C. 12 - Depósito tecnogênico construído no Jardim Atlântico à Avenida Guarapari, próximo a nascente do Córrego Cascavel, coordenadas geográficas 682021E e 8149426N. Presença de resíduos de construção civil, diversos: restos de materiais de construção, papéis, plásticos, madeira (Figuras 25 e 26).

D.T.C. 13 - Depósito tecnogênico na Vila Rosa à Alameda Aliança, ao fundo do Motel Sol, próximo a nascente do Córrego Cascavel, coordenadas geográficas 682606E e 8147766N. Presença predominante de ossos de animais, além de tecidos, plásticos e pedaços de madeira. Ao lado do depósito encontra-se uma placa com os seguintes dizeres: Cuidado! Febre amarela e Dengue (Figuras 27 e 28).

D.T.C. 14 - Depósito tecnogênico construído no Setor Parque Amazonas junto à Avenida Laguna, coordenadas geográficas 682335E e 8149298N. Predominância de materiais gárgicos e úrbicos ao longo da avenida, além de plásticos e embalagens de papelão (Figuras 29 e 30).

D.T.C. 15 - Depósito tecnogênico construído no Setor Parque Amazonas à Avenida Juazeiro do Norte, coordenadas geográficas 682757E e 8149799N. Depósito apresentando resíduos sólidos diversos: lixo doméstico, papelão, plásticos, pedaços de madeira, embalagens de cimento e resíduos de construção civil provenientes das demolições e construções próximas ao depósito (Figuras 31 e 32).

D.T.C. 16 - Depósito tecnogênico construído no Setor Aeroviário à Rua 09, próximo às margens do Córrego Capim Puba, coordenadas geográficas 684609E e 8156789N. Presença de resíduos de construção civil, plásticos e papelão (Figura 33).

D.T.C. 17 - Depósito tecnogênico construído no Setor Criméia Oeste à Avenida João Luis Almeida, margem esquerda do Córrego Botafogo, ao fundo da Goiás Modas, coordenadas geográficas 685340E e 8158329N. Depósito com predominância de tecidos, sacos plásticos e descartáveis (Figuras 34 e 35).

D.T.C. 18 - Depósito tecnogênico construído no Setor Córrego Leste à Rua Desor Emílio Francisco Pávoa, margem direita do Córrego Botafogo, em frente ao DT 17, coordenadas geográficas 685453E e 8158343N. Depósito com predominância de materiais úrbicos e gárbicos (Figuras 36 e 37).

D.T.C. 19 - Depósito tecnogênico construído no Setor Vila Adélia à Rua Coordenador Alberto Nepomuceno, próximo às margens do Córrego Macambira, coordenadas geográficas 679228E e 8153517N. Depósito com presença de materiais diversos: tecidos, plásticos, madeira, resíduos de construção civil, vidros, embalagens de remédios e pilhas (Figuras 38 e 39).

Dentre os dezenove depósitos tecnogênicos identificados, escolheu-se quatro para caracterização e amostragem do solo visando análise para metais pesados. Para se fazer esta seleção utilizou-se critérios como: dimensão, diversidade de entulhos, localização, assim como questões financeiras, conforme mencionado no capítulo quatro. Foram selecionados os D.T.Cs: 2, 6, 7,11.

5.1 – Depósito Tecnogênico Construído 2

O depósito está situado no Setor Parque Industrial à Avenida Francisco Alves de Oliveira, coordenadas geográficas 674972E e 8154612N. É um depósito de grandes dimensões (Figuras 40 e 42), situado em um lote vazio, contendo principalmente materiais gárbicos e úrbicos, com presenças de plásticos, isopor, papel, tecidos, gesso, alumínio e frascos vazios de remédios. Devido a extensão da área, 671,5m² o depósito foi dividido em quatro partes: A, B, C e D.
Parte A - área de 173,3m², sendo 16,20m de comprimento e 10,70m de largura com 0,95m de altura.

Parte B - área de 135m², sendo 15m de comprimento e 9m de largura com 1m de altura.

Parte C - área de 142,8m², sendo 17m de comprimento e 8,4m de largura com 1m de altura.

Parte D - uma área de 220,4m², sendo 15,2m de comprimento e 14,5m de largura com 0,80m de altura.

Os resíduos encontrados podem ser distribuídos aproximadamente da seguinte forma: 70% de resíduos de construção civil, 8% de gesso, 7% de plásticos, 5% de papel, 3% de tecidos, 3% de isopor, 2% de alumínio e 2% de frascos de remédios. Chegou-se a esse resultado através do percorrido pelo depósito (Figura 42).

Figura 42 - Gráfico apresentando os componentes do D.T.C.
5.2 – Depósito Tecnogênico Construído 6

O depósito situado no Condomínio Anhanguera à Rua 1, próximo a Rua Francisco Alves Fortes, coordenadas geográficas 675007E e 8151919N. Apresenta restos de animais e ossos o que justifica a presença de urubus e mau cheiro. Encontra-se ainda acúmulos contínuos de solo de coloração vermelha, plásticos, estofados, brita, vidros, madeiras, papelão e pneus (Figuras 43 e 44)

O depósito ocupa uma área de 143,8m² sendo 12,4m de comprimento e 11,6m de largura com aproximadamente 1m de altura. Os constituintes do depósito estão distribuídos aproximadamente da seguinte forma: 40% de restos de materiais de construções, 15% de estofados, 12% de pneus, 12% de papelão, 8% de madeira, 5% de brita 4% de plásticos, 2% de vidros e 2% de restos de animais mortos (Figura 45).

COMPOSIÇÃO DO D.T.C. 6

Figura 45 – Gráfico apresentando a composição do depósito
5.3 – Depósito Tecnogênico Construído 7

O depósito ocupa uma área de 227,5m², sendo 22,5m de comprimento, 10,1m de largura e 1,2m de altura.

O presente depósito está situado no Setor Parque Santa Rita, às margens do Anel viário, próximo ao Córrego Itaquaral, coordenadas geográficas 675378E e 8150687N, contendo materiais gárbicos e úrbicos, pneus, vidros, descartáveis madeira, papéis, restos de animais mortos e ossos (Figuras 46 e 47).

Parte do depósito ocupa a planície de inundação do Córrego Itaquaral. Segundo um morador da região, Sr. Francisco, no período chuvoso o lixo escorre para dentro do córrego, fato comprovado pelos rejeitos presentes nos barrancos do curso d’água.

O depósito apresenta a seguinte constituição: 30% de resíduos de construção civil, 20% de madeira e compensados, 15% de papéis, 10% de descartáveis (copos, pratos, marmitex), 10% de tecidos, 8% de pneus, 4% de vidros (embalagens vazias de enlatados e conservas) e 3% de restos de animais mortos e ossos (Figura 48).

Figura 48 – Gráfico apresentando a composição do depósito
5.4 – Depósito Tecnogênico Construído 11

O depósito abrange uma área de 156,9m² sendo 14,4m de comprimento, 10,9m de largura com 0,40m de altura.

O depósito está situado à Rua C 107 esquina com a T9 próximo ao Carrefour junto à margem do Córrego Cascavel, coordenadas geográficas 681768E e 8151891N. O depósito encontra-se sobre a marginal Cascavel que está interrompida em virtude do deslizamento da encosta que destruiu parte do asfalto. Contém muito lixo orgânico (restos de animais mortos, ossos e lixo doméstico), além de materiais gárbicos, úrbicos, tecidos, madeira, frascos de remédios cheios e vazios, seringas descartáveis utilizadas e pneus (Figuras 49 e 50).

![Figura nº 49 – Detalhes dos resíduos do depósito. Data: 13/09/2007 Foto: Gisele Lisboa de Brito](image)

Os rejeitos estão distribuídos da seguinte forma: 20% de compensados e madeira, 15% de resíduos de construção civil, 15% de plásticos (caixas de eletrodomésticos, seringas descartáveis e embalagens de alimentos conservados), 12% de lixo orgânico (lixo doméstico, restos de animais mortos e ossos), 12% de tecidos, 12% de papel, 10% de gesso, 4% de frascos de remédios cheios e vazios (Figura 50).

Figura 51 – Gráfico apresentando a composição do depósito

Os quatro depósitos descritos representam muito bem os demais, assim como a situação atual que envolve a ocupação urbana de Goiânia. Os fundos dos vales, as vertentes e os interflúvios recebem rejeitos antrópicos sem qualquer tipo de seleção ou controle, evidenciando uma falta de política urbana e de fiscalização.

Esses depósitos podem estar se tornando em elos entre a população, o ambiente e a saúde.
5.5 – ASPECTOS GEOQUÍMICOS INTEGRADOS

A identificação e caracterização de uma anomalia geoquímica em um solo só são possíveis por meio de análises de laboratório, onde as mostras de solo são analisadas e caracterizadas de acordo com a sua composição.

O quadro abaixo apresenta os elementos químicos analisados e os respectivos valores contidos em cada D.T.

Quadro 6 – Resultados analíticos dos elementos químicos.

<table>
<thead>
<tr>
<th>Elementos</th>
<th>DT 2</th>
<th>DT 6</th>
<th>DT 7</th>
<th>D T 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>57062,194</td>
<td>73576,360</td>
<td>24993,094</td>
<td>37664,494</td>
</tr>
<tr>
<td>Ba</td>
<td>50,505</td>
<td>167,236</td>
<td>9,402</td>
<td>47,283</td>
</tr>
<tr>
<td>Ca</td>
<td>26792,154</td>
<td>14260,760</td>
<td>501,077</td>
<td>14581,800</td>
</tr>
<tr>
<td>Cd</td>
<td>15,428</td>
<td>26,466</td>
<td>10,750</td>
<td>9,631</td>
</tr>
<tr>
<td>Co</td>
<td>7,561</td>
<td>11,194</td>
<td>3,432</td>
<td>5,566</td>
</tr>
<tr>
<td>Cr</td>
<td>84,021</td>
<td>132,809</td>
<td>90,522</td>
<td>73,990</td>
</tr>
<tr>
<td>Cu</td>
<td>26,897</td>
<td>157,011</td>
<td>11,680</td>
<td>27,565</td>
</tr>
<tr>
<td>Fe</td>
<td>57082,665</td>
<td>73596,832</td>
<td>25013,565</td>
<td>37684,965</td>
</tr>
<tr>
<td>K</td>
<td>609,327</td>
<td>1484,907</td>
<td>214,850</td>
<td>1416,790</td>
</tr>
<tr>
<td>Li</td>
<td>3,414</td>
<td>2,050</td>
<td>0,343</td>
<td>4,918</td>
</tr>
<tr>
<td>Mg</td>
<td>2445,618</td>
<td>1367,838</td>
<td>190,143</td>
<td>1314,982</td>
</tr>
<tr>
<td>Mn</td>
<td>232,668</td>
<td>372,632</td>
<td>109,647</td>
<td>147,035</td>
</tr>
<tr>
<td>Na</td>
<td>51,007</td>
<td>178,225</td>
<td>26,524</td>
<td>65,242</td>
</tr>
<tr>
<td>Ni</td>
<td>20,204</td>
<td>29,428</td>
<td>6,262</td>
<td>22,169</td>
</tr>
<tr>
<td>Pb</td>
<td>16,249</td>
<td>85,793</td>
<td>5,727</td>
<td>20,212</td>
</tr>
<tr>
<td>Sc</td>
<td>9,814</td>
<td>14,519</td>
<td>4,905</td>
<td>7,268</td>
</tr>
<tr>
<td>Sr</td>
<td>58,789</td>
<td>88,076</td>
<td>3,279</td>
<td>71,948</td>
</tr>
<tr>
<td>Ti</td>
<td>2253,165</td>
<td>1961,605</td>
<td>1597,165</td>
<td>1273,310</td>
</tr>
<tr>
<td>V</td>
<td>106,305</td>
<td>130,116</td>
<td>79,643</td>
<td>74,594</td>
</tr>
<tr>
<td>Zn</td>
<td>31,106</td>
<td>269,070</td>
<td>40,250</td>
<td>59,880</td>
</tr>
</tbody>
</table>
Como se pode notar no quadro 6, o D.T. 2 se destaca, apresentando valores superiores aos demais analisados.

O mapa geoquímico pode indicar áreas com excesso de elementos químicos potencialmente tóxicos, bem como áreas com deficiência de elementos essenciais. Áreas com altas concentrações de um determinado elemento podem auxiliar a delimitação de depósitos minerais, a localização de rejeitos industriais e ou residenciais, além de resíduos de pesticidas (Siegel 2002). Neste caso, as altas concentrações dos elementos são devido a grande quantidade de rejeitos oriundos da ação humana, ou seja, depósitos tecnogênicos.

A definição de valores anômalos é de fundamental importância nos estudos geoquímicos. Independente do modelo geológico, os resultados de um tratamento estatístico são interpretados como anômalos quando superiores a 1, 2, ou 3 desvios padrão mais a média aritmética ou geométrica caracterizando concentrações, a 1ª, 2ª e 3ª ordem (Maia 2004).

A partir dos dados estatísticos são calculados os limites de 1ª 2ª e 3ª ordens. Valores da 3ª ordem correspondem àqueles situados entre o valor médio mais um desvio padrão e o valor médio mais dois desvios padrão. Os valores da 2ª ordem estão entre os valores maiores que o valor médio mais dois desvios padrão e o valor médio mais três desvios padrão. Os valores de 1ª ordem correspondem as maiores concentrações encontradas e consequentemente são as mais preocupantes (Maia 2004).

O processo histórico tem mostrado que geralmente só anomalias superior a 2ª ordem são importantes o suficiente para ser considerado na seleção dos potenciais.

O quadro 7 apresenta o sumário estatísticos dos solos coletados nos D.T.Cs selecionados e os valores de referência de qualidade da CETESB para comparação.
Quadro 7 – Sumário estatístico dos solos coletados na bacia do Ribeirão Anicuns e valores de referência da CETESB.

<table>
<thead>
<tr>
<th>Elementos Químicos</th>
<th>V mín.</th>
<th>V max.</th>
<th>X</th>
<th>S</th>
<th>＞X+3S</th>
<th>X+2S-X+3S</th>
<th>X+s-X+2s</th>
<th>CETESB Referência/Qualidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>24993.0</td>
<td>73576.4</td>
<td>48324.0</td>
<td>21385.3</td>
<td>＞112479.9</td>
<td>91094.6 - 112479.9</td>
<td>＜69709.3 - 91093.6</td>
<td>＜0.5</td>
</tr>
<tr>
<td>Ba</td>
<td>9.4</td>
<td>167.2</td>
<td>68.6</td>
<td>68.3</td>
<td>＞273.5</td>
<td>205.2 -273.5</td>
<td>＜136.9 - 205.0</td>
<td>75</td>
</tr>
<tr>
<td>Ca</td>
<td>501.0</td>
<td>26792.1</td>
<td>1403333.9</td>
<td>10743.4</td>
<td>＞143556.4</td>
<td>1424820.7 - 1435564.1</td>
<td>＜1414077.3 - 1424819.7</td>
<td>-</td>
</tr>
<tr>
<td>Cd</td>
<td>9.6</td>
<td>26.4</td>
<td>15.5</td>
<td>7.7</td>
<td>＞38.6</td>
<td>30.9 -38.6</td>
<td>＜23.2 -30.8</td>
<td>＜0.5</td>
</tr>
<tr>
<td>Co</td>
<td>3.4</td>
<td>11.2</td>
<td>6.9</td>
<td>3.3</td>
<td>＞16.8</td>
<td>13.5 – 16.8</td>
<td>＜10.2 -13.4</td>
<td>13</td>
</tr>
<tr>
<td>Cr</td>
<td>73.9</td>
<td>132.8</td>
<td>95.3</td>
<td>25.9</td>
<td>＞173</td>
<td>147.1 - 173</td>
<td>＜121.2 – 147.0</td>
<td>40</td>
</tr>
<tr>
<td>Cu</td>
<td>11.7</td>
<td>157.0</td>
<td>55.8</td>
<td>67.8</td>
<td>＞259.2</td>
<td>191.4 -259.2</td>
<td>＜123.6 - 190.3</td>
<td>35</td>
</tr>
<tr>
<td>Fe</td>
<td>25013.8</td>
<td>73596.2</td>
<td>48344.2</td>
<td>21385.3</td>
<td>＞112500.0</td>
<td>91114.8 - 112500.1</td>
<td>＜69729.5 - 91113.8</td>
<td>-</td>
</tr>
<tr>
<td>K</td>
<td>214.8</td>
<td>1484.9</td>
<td>931.4</td>
<td>621.6</td>
<td>＞2796.2</td>
<td>2174.6 - 2796.2</td>
<td>＜1553 - 2173.6</td>
<td>-</td>
</tr>
<tr>
<td>Li</td>
<td>0.34</td>
<td>4.9</td>
<td>2.7</td>
<td>1.9</td>
<td>＞8.4</td>
<td>6.5 – 8.4</td>
<td>＜4.6 – 6.4</td>
<td>-</td>
</tr>
<tr>
<td>Mg</td>
<td>190.1</td>
<td>2445.4</td>
<td>1329.6</td>
<td>921.1</td>
<td>＞4092.9</td>
<td>3171.8 - 4092.9</td>
<td>＜2250.7 – 3170.8</td>
<td>-</td>
</tr>
<tr>
<td>Mn</td>
<td>109.6</td>
<td>372.6</td>
<td>215.5</td>
<td>116.7</td>
<td>＞565.6</td>
<td>448.9 - 565.6</td>
<td>＜332.2 – 447.0</td>
<td>-</td>
</tr>
<tr>
<td>Na</td>
<td>26.5</td>
<td>178.2</td>
<td>80.2</td>
<td>67.2</td>
<td>＞281.8</td>
<td>214.6 -281.8</td>
<td>＜147.4 – 213.0</td>
<td>-</td>
</tr>
<tr>
<td>Ni</td>
<td>6.2</td>
<td>29.4</td>
<td>19.5</td>
<td>9.6</td>
<td>＞48.3</td>
<td>38.7 -48.3</td>
<td>＜29.1 -37.7</td>
<td>13</td>
</tr>
<tr>
<td>Pb</td>
<td>5.7</td>
<td>85.7</td>
<td>31.9</td>
<td>36.3</td>
<td>＞140.8</td>
<td>104.5 – 140.8</td>
<td>＜68.5 -103.4</td>
<td>17</td>
</tr>
<tr>
<td>Sc</td>
<td>4.9</td>
<td>14.5</td>
<td>9.1</td>
<td>4.1</td>
<td>＞21.4</td>
<td>17.3 – 21.4</td>
<td>＜13.2 -16.3</td>
<td>-</td>
</tr>
<tr>
<td>Sr</td>
<td>3.2</td>
<td>88.0</td>
<td>55.5</td>
<td>36.8</td>
<td>＞165.9</td>
<td>129.1 -165.0</td>
<td>＜92.3 - 129.0</td>
<td>-</td>
</tr>
<tr>
<td>Ti</td>
<td>1273.1</td>
<td>2253.1</td>
<td>1771.3</td>
<td>426.9</td>
<td>＞3052</td>
<td>2625.1 – 3052</td>
<td>＜2198.2 – 2624.0</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>74.6</td>
<td>130.1</td>
<td>97.6</td>
<td>27.7</td>
<td>＞180.7</td>
<td>153 – 180.7</td>
<td>＜125.3 – 152</td>
<td>275</td>
</tr>
<tr>
<td>Zn</td>
<td>31.1</td>
<td>269.0</td>
<td>100.0</td>
<td>113.3</td>
<td>＞439.9</td>
<td>326.6 – 439.9</td>
<td>＜213.3 – 325.0</td>
<td>60</td>
</tr>
</tbody>
</table>

Os resultados mostraram altas concentrações de elementos que analisados estatisticamente apontaram valores de 3ª ordem. São eles: Alumínio, Bário, Cádmio, Cobalto, Cromo, Cobre, Ferro, Litio, Magnésio, Manganês, Sódio, Níquel, Chumbo, Escândio, Titânio, Vanádio e Zinco.
A partir dos resultados das concentrações dos elementos químicos foram confeccionadas as matrizes de correlação do solo e definidas as associações geoquímicas.

A matriz de correlação possibilitou a identificação da associação entre os elementos químicos analisados. A correlação entre os 20 elementos pode ser vista no quadro abaixo.

Quadro 8 – Matriz de correlação dos elementos químicos analisados no solo dos D.T.Cs selecionados.

MATRIZ DE CORRELAÇÃO DOS ELEMENTOS ANALISADOS NO SOLO (Anicuns)

<table>
<thead>
<tr>
<th></th>
<th>Al</th>
<th>Ba</th>
<th>Ca</th>
<th>Cd</th>
<th>Co</th>
<th>Cu</th>
<th>Fe</th>
<th>K</th>
<th>Li</th>
<th>Mg</th>
<th>Mn</th>
<th>Na</th>
<th>Ni</th>
<th>Pb</th>
<th>Sc</th>
<th>Sr</th>
<th>Ti</th>
<th>V</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0.90</td>
<td>0.62</td>
<td>0.91</td>
<td>0.99</td>
<td>0.71</td>
<td>0.63</td>
<td>1.00</td>
<td>0.57</td>
<td>0.17</td>
<td>0.63</td>
<td>0.98</td>
<td>0.84</td>
<td>0.86</td>
<td>0.84</td>
<td>0.99</td>
<td>0.80</td>
<td>0.67</td>
<td>0.95</td>
<td>0.76</td>
</tr>
<tr>
<td>Ba</td>
<td>0.90</td>
<td>0.26</td>
<td>0.94</td>
<td>0.95</td>
<td>0.87</td>
<td>0.99</td>
<td>0.90</td>
<td>0.73</td>
<td>0.04</td>
<td>0.27</td>
<td>0.96</td>
<td>0.99</td>
<td>0.86</td>
<td>0.96</td>
<td>0.98</td>
<td>0.76</td>
<td>0.35</td>
<td>0.67</td>
<td>0.96</td>
</tr>
<tr>
<td>Ca</td>
<td>0.62</td>
<td>0.26</td>
<td>0.25</td>
<td>0.52</td>
<td>0.10</td>
<td>0.11</td>
<td>0.62</td>
<td>0.30</td>
<td>0.67</td>
<td>1.00</td>
<td>0.44</td>
<td>0.17</td>
<td>0.61</td>
<td>0.14</td>
<td>0.50</td>
<td>0.64</td>
<td>0.60</td>
<td>0.42</td>
<td>-0.01</td>
</tr>
<tr>
<td>Cd</td>
<td>0.91</td>
<td>0.94</td>
<td>0.25</td>
<td>0.94</td>
<td>0.94</td>
<td>0.95</td>
<td>0.91</td>
<td>0.46</td>
<td>-0.20</td>
<td>0.27</td>
<td>0.98</td>
<td>0.92</td>
<td>0.70</td>
<td>0.94</td>
<td>0.95</td>
<td>0.60</td>
<td>0.59</td>
<td>0.97</td>
<td>0.91</td>
</tr>
<tr>
<td>Co</td>
<td>0.99</td>
<td>0.95</td>
<td>0.52</td>
<td>0.94</td>
<td>0.77</td>
<td>0.90</td>
<td>0.99</td>
<td>0.65</td>
<td>0.15</td>
<td>0.53</td>
<td>0.99</td>
<td>0.91</td>
<td>0.89</td>
<td>0.91</td>
<td>1.00</td>
<td>0.83</td>
<td>0.57</td>
<td>0.94</td>
<td>0.84</td>
</tr>
<tr>
<td>Cr</td>
<td>0.71</td>
<td>0.87</td>
<td>0.10</td>
<td>0.94</td>
<td>0.77</td>
<td>0.94</td>
<td>0.71</td>
<td>0.36</td>
<td>0.45</td>
<td>-0.08</td>
<td>0.85</td>
<td>0.88</td>
<td>0.49</td>
<td>0.91</td>
<td>0.85</td>
<td>0.38</td>
<td>0.40</td>
<td>0.85</td>
<td>0.94</td>
</tr>
<tr>
<td>Cu</td>
<td>0.83</td>
<td>0.99</td>
<td>0.11</td>
<td>0.95</td>
<td>0.90</td>
<td>0.94</td>
<td>0.83</td>
<td>0.66</td>
<td>0.11</td>
<td>0.12</td>
<td>0.93</td>
<td>0.99</td>
<td>0.76</td>
<td>0.99</td>
<td>1.00</td>
<td>0.91</td>
<td>0.67</td>
<td>0.31</td>
<td>0.85</td>
</tr>
<tr>
<td>Fe</td>
<td>1.00</td>
<td>0.90</td>
<td>0.62</td>
<td>0.91</td>
<td>0.99</td>
<td>0.71</td>
<td>0.83</td>
<td>0.57</td>
<td>0.17</td>
<td>0.63</td>
<td>0.98</td>
<td>0.84</td>
<td>0.80</td>
<td>0.99</td>
<td>0.80</td>
<td>0.67</td>
<td>0.95</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.57</td>
<td>0.73</td>
<td>0.30</td>
<td>0.46</td>
<td>0.65</td>
<td>0.36</td>
<td>0.66</td>
<td>0.57</td>
<td>0.60</td>
<td>0.27</td>
<td>0.57</td>
<td>0.76</td>
<td>0.89</td>
<td>0.71</td>
<td>0.64</td>
<td>0.91</td>
<td>-0.21</td>
<td>0.35</td>
<td>0.66</td>
</tr>
<tr>
<td>Li</td>
<td>0.17</td>
<td>0.04</td>
<td>0.67</td>
<td>0.20</td>
<td>0.15</td>
<td>0.45</td>
<td>0.11</td>
<td>0.17</td>
<td>0.60</td>
<td>0.64</td>
<td>0.01</td>
<td>0.02</td>
<td>0.55</td>
<td>0.05</td>
<td>0.12</td>
<td>0.65</td>
<td>-0.19</td>
<td>-0.16</td>
<td>-0.16</td>
</tr>
<tr>
<td>Mg</td>
<td>0.63</td>
<td>0.27</td>
<td>1.00</td>
<td>0.27</td>
<td>0.53</td>
<td>0.08</td>
<td>0.12</td>
<td>0.63</td>
<td>0.27</td>
<td>0.64</td>
<td>0.46</td>
<td>0.18</td>
<td>0.61</td>
<td>0.15</td>
<td>0.51</td>
<td>0.63</td>
<td>0.64</td>
<td>0.45</td>
<td>-0.01</td>
</tr>
<tr>
<td>Mn</td>
<td>0.98</td>
<td>0.96</td>
<td>0.44</td>
<td>0.98</td>
<td>0.99</td>
<td>0.65</td>
<td>0.93</td>
<td>0.98</td>
<td>0.57</td>
<td>0.01</td>
<td>0.46</td>
<td>0.92</td>
<td>0.82</td>
<td>0.92</td>
<td>0.99</td>
<td>0.74</td>
<td>0.61</td>
<td>0.97</td>
<td>0.87</td>
</tr>
<tr>
<td>Na</td>
<td>0.84</td>
<td>0.99</td>
<td>0.17</td>
<td>0.92</td>
<td>0.91</td>
<td>0.88</td>
<td>0.99</td>
<td>0.84</td>
<td>0.76</td>
<td>0.02</td>
<td>0.18</td>
<td>0.92</td>
<td>0.83</td>
<td>0.99</td>
<td>1.00</td>
<td>0.92</td>
<td>0.76</td>
<td>0.25</td>
<td>0.82</td>
</tr>
<tr>
<td>Ni</td>
<td>0.86</td>
<td>0.85</td>
<td>0.61</td>
<td>0.70</td>
<td>0.89</td>
<td>0.49</td>
<td>0.76</td>
<td>0.86</td>
<td>0.89</td>
<td>0.55</td>
<td>0.61</td>
<td>0.82</td>
<td>0.83</td>
<td>0.79</td>
<td>0.89</td>
<td>0.26</td>
<td>0.68</td>
<td>0.68</td>
<td>0.70</td>
</tr>
<tr>
<td>Pb</td>
<td>0.84</td>
<td>0.99</td>
<td>0.14</td>
<td>0.94</td>
<td>0.91</td>
<td>0.91</td>
<td>1.00</td>
<td>0.84</td>
<td>0.71</td>
<td>0.05</td>
<td>0.15</td>
<td>0.92</td>
<td>0.99</td>
<td>0.90</td>
<td>1.00</td>
<td>0.79</td>
<td>0.72</td>
<td>0.28</td>
<td>0.54</td>
</tr>
<tr>
<td>Sc</td>
<td>0.99</td>
<td>0.96</td>
<td>0.50</td>
<td>0.95</td>
<td>1.00</td>
<td>0.80</td>
<td>0.91</td>
<td>0.99</td>
<td>0.64</td>
<td>0.12</td>
<td>0.51</td>
<td>0.99</td>
<td>0.92</td>
<td>0.86</td>
<td>0.92</td>
<td>0.81</td>
<td>0.57</td>
<td>0.94</td>
<td>0.85</td>
</tr>
<tr>
<td>Sr</td>
<td>0.80</td>
<td>0.78</td>
<td>0.64</td>
<td>0.60</td>
<td>0.83</td>
<td>0.38</td>
<td>0.67</td>
<td>0.80</td>
<td>0.91</td>
<td>0.65</td>
<td>0.63</td>
<td>0.74</td>
<td>0.76</td>
<td>0.99</td>
<td>0.99</td>
<td>0.72</td>
<td>0.81</td>
<td>0.18</td>
<td>0.58</td>
</tr>
<tr>
<td>Ti</td>
<td>0.67</td>
<td>0.35</td>
<td>0.60</td>
<td>0.59</td>
<td>0.57</td>
<td>0.40</td>
<td>0.31</td>
<td>0.67</td>
<td>0.21</td>
<td>0.19</td>
<td>0.64</td>
<td>0.61</td>
<td>0.25</td>
<td>0.26</td>
<td>0.28</td>
<td>0.57</td>
<td>0.16</td>
<td>0.76</td>
<td>0.20</td>
</tr>
<tr>
<td>V</td>
<td>0.95</td>
<td>0.87</td>
<td>0.42</td>
<td>0.97</td>
<td>0.94</td>
<td>0.85</td>
<td>0.86</td>
<td>0.95</td>
<td>0.35</td>
<td>0.16</td>
<td>0.45</td>
<td>0.97</td>
<td>0.82</td>
<td>0.68</td>
<td>0.84</td>
<td>0.94</td>
<td>0.58</td>
<td>0.76</td>
<td>0.79</td>
</tr>
<tr>
<td>Zn</td>
<td>0.76</td>
<td>0.96</td>
<td>0.01</td>
<td>0.91</td>
<td>0.84</td>
<td>0.94</td>
<td>0.99</td>
<td>0.76</td>
<td>0.66</td>
<td>0.16</td>
<td>0.01</td>
<td>0.87</td>
<td>0.98</td>
<td>0.70</td>
<td>0.99</td>
<td>0.85</td>
<td>0.62</td>
<td>0.20</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Sample Size: 4

código de cores (significância 0.95)
- **muito forte**
- **forte**
- **moderada**
- **fraca**
- **muito fraca**
- **nula**
Obteve-se valores superiores a 0,99 em 11 associações destacadas na cor rosa na matriz de correlação dos elementos químicos um indicativo de correlação muito forte. Observa-se a correlação muito forte entre os elementos abaixo:

\[\text{C Al} - \text{Fe} = 1 \text{ (muito forte)} \quad \text{C Ba} - \text{Na} - \text{Pb} = 0.99 \text{ (muito forte)} \]

\[\text{C Mg} - \text{Ca} = 1 \text{ (muito forte)} \quad \text{C Cu} - \text{Zn} = 0.99 \text{ (muito forte)} \]

\[\text{C Sc} - \text{Co} = 1 \text{ (muito forte)} \quad \text{C Mn} - \text{Co} = 0.99 \text{ (muito forte)} \]

\[\text{C Pb} - \text{Cu} = 1 \text{ (muito forte)} \quad \text{C Sc} - \text{Mn} = 0.99 \text{ (muito forte)} \]

\[\text{C Pb} - \text{Na} = 1 \text{ (muito forte)} \quad \text{C Sr} - \text{Ni} = 0.99 \text{ (muito forte)} \]

Por se tratar de depósitos tecnogênicos, essas correlações são indicativos de processos não-naturais, pois estes depósitos geralmente são locais de despejo de efluentes sanitários, residenciais e de constução civil gerados pelo homem, principalmente nas cidades.

As análises de solo feitas no laboratório da UCB (Universidade Católica de Brasília) apresentaram dados de alerta. Foram analisados vinte elementos químicos, destes, mais de 50% indicaram valores superiores ao estabelecidos pela tabela de qualidade da CETESB. Soma-se a isto o fato de que dezessete elementos apresentaram valores de background de 3ª ordem. Sabendo-se que os resultados superiores a 1ª 2ª e 3ª ordem são considerados anômalos, esses dados revelam um quadro preocupante, em pouco tempo poderemos ter um aumento destes valores, o que trará mais prejuízos a população e ao meio ambiente.

apresentam as consequências na saúde pela carência ou excesso de elementos químicos, posteriormente Pascalichio (2002) apresenta os prejuízos causados aos vegetais. O que nos leva a crer que a dosagem certa proporciona o equilíbrio nos organismos, porém, se essa dosagem exceder, as implicações são inúmeras, como apresenta o quadro 5 (pg 47).

O background vem sendo utilizado como ponto propulsor para a biomonitoração das diversas formas de poluição da bacia do ribeirão Anicuns. Silva (2007) defendeu sua tese a partir da contaminação dos elementos químicos de água e sedimento de corrente na bacia do ribeirão Anicuns e chegou a conclusão que a situação é estapreadora, pois encontrou metais pesados em diversos pontos na bacia.

6. DISCUSSÃO

Goiânia é uma cidade que foi planejada. Os seus projetos iniciais compreendiam o planejamento urbano e a orientação ecológica como norteadores do processo de urbanização. Percebe-se, porém que a especulação imobiliária, a explosão populacional e consequentemente a falta de controle, foram responsáveis pela ocupação das áreas verdes e a degradação da capital.

A bacia do ribeirão Anicuns apresenta inúmeros problemas ambientais: as águas estão poluídas por esgotos domésticos e industriais, os canais e cursos d’ água modificados, as margens dos córregos encontram-se desprotegidas o que vem proporcionando processos erosivos e o assoreamento dos canais. Em muitos córregos encontram-se esgotos lançados in natura trazendo microorganismos e dejetos que colocam em risco a saúde e a vida da população e de animais que vivem nessas regiões.

A deposição de sedimentos e rejeitos às margens dos córregos se tornou uma prática, em conseqüência do crescimento dos aglomerados urbanos em torno dos cursos d’ água. A população enxerga nos córregos e ribeirões um local para o despejo de seus resíduos produzidos.

Conforme apresenta a ABNT (1987), no tocante a natureza e origem, os lixos podem ser residenciais, comerciais, públicos, domiciliares e especiais. Alguns levam anos para serem decompostos, outros nem tanto. O que todos têm em comum é que atraem micro e macrovetores disseminadores diretos ou indiretos de enfermidades em humanos e animais. Além de trazerem prejuízos ambientais, contaminam as águas superficiais e do lençol freático.

Como apresenta o quadro 3, (pg 38) deste trabalho, as enfermidades transmitidas por esses vetores encontrados nos depósitos tecnogênicos, vão desde as mais simples até aquelas que podem causar a morte. Depende muito também do estado imunológico do ser atingido. Além dessas implicações, pode-se acrescentar ainda que os depósitos geralmente causam mal cheiro e deturpam a estética da paisagem.

Rodrigues & Cavinatto (2003), demonstram preocupação com o fato de animais domésticos se alimentarem dos resíduos dos lixões. Os cães transportam continuamente micróbios patogênicos para as residências, podendo afetar toda a família, especialmente as crianças. Portanto, o lixo descartado ou jogado sem qualquer
cuidado é sinônimo de poluição e doença, a sujeira espalhada pelas ruas e terrenos deixa as cidades com aspecto feio, entope bueiros, aumentando a ocorrência de enchentes.

Alguns trabalhos apresentados nos últimos anos demonstram o quanto a questão ambiental da cidade de Goiânia vem trazendo preocupações.

Rubin (2003) apresenta uma série de ocorrências de depósitos tecnogênicos associados ao Rio Meia Ponte e em alguns de seus afluentes, entre eles o ribeirão Anicuns e os córregos Botafogo e Cascavel. Em alguns casos os depósitos chegam a alcançar 3,5m de espessura.

Rubin et al (2007) mapearam dois seguimentos da planície aluvial do ribeirão Anicuns e verificaram que além dos problemas relacionados ao comportamento hidrodinâmico do canal, os restos de artefatos acumulados na região contaminam os sedimentos e o lençol freático.

Cunha (2000) também caracterizou os depósitos tecnogênicos na Vila Roriz, próximo a conflúência do ribeirão Anicuns com o Rio Meia Ponte. Nesta área, o autor encontrou depósitos tecnogênicos de até 7m de espessura.

Oliveira (2007) caracterizou alguns depósitos tecnogênicos encontrados as margens dos córregos Salinas e Cascavel na área urbana de Goiânia, um dos depósitos chega a ocupar 671,54m².

Os gráficos 1, 2, 3 e 4 referentes a composição dos depósitos tecnogênicos revelam uma grande diversidade de detritos, alguns, como o vidro, pode levar até um milhão de anos para se decompor, conforme apresenta o quadro 1, (pg 32).

O plástico é um dos detritos encontrados em maior quantidade. Se fosse feita a coleta seletiva e a reciclagem, este problema poderia ser minimizado. Alguns elementos como folhagens, restos de comidas e restos de animais em decomposição podem se transformar em biogás através de biodigestores e depois em húmus para adubar o solo.

Os pneus, além de levarem muito tempo para se decompor, acumulam água da chuva e se tornam grandes depósitos de mosquitos que transmitem doenças à população.
O lixo hospitalar (agulhas de injeção, seringas, frascos de remédios e outros), trazem grande preocupação, sendo classificados por Braga et al (2005), como resíduos perigosos e apresentam comumente características patogênicas e infecciosas, podendo transmitir doenças e contaminar o solo.

No D.T.C. 19, pode-se observar pilhas de rádio. Uma pilha comum contém, geralmente, metais pesados como cádmio, zinco, chumbo, além de substâncias perigosas como o cloreto de amônia e o negro de acetileno. A pilha de tipo alcalina contém também o mercúrio, uma das substâncias mais tóxicas que se conhece (Lauffer 2000).

O perigo deve-se ao fato de que quando se joga uma pilha ou bateria no lixo comum, essas substâncias podem entrar na cadeia alimentar humana, causando sérios danos à saúde.

Percebe-se que a cidade de Goiânia, assim como tantas outras, está longe de ser uma cidade sustentável, como nos assegura o Estatuto da Cidade.

Não se pode negar que a problemática ambiental assume hoje uma posição de destaque nos mais diversos âmbitos da vida: na política, na economia, nos movimentos da sociedade civil. Essa preocupação crescente com a questão ambiental possui uma influência significativa sobre vários níveis de decisão política empresarial seja do setor público ou privado (Braga et al, 2005).

O autor lembra ainda que no passado, a questão ambiental era tratada com muito romantismo, enquanto atualmente possui uma característica pragmática. Hoje se vê, perfeitamente, políticos, empresários, líderes comunitários, chefes de estado, dentre tantos outros, discursarem com desenvoltura sobre o desenvolvimento sustentável. Tudo isso porque o mundo vive hoje diversos tipos de problemas ambientais, alguns de ordem global, outros regional, outros local. O que nos leva a pensar sobre a evolução da consciência global sobre o meio ambiente.

De acordo com a Companhia de Urbanização de Goiânia (Comurg) e a Secretaria Municipal de Meio Ambiente (Semma), os dejetos em Goiânia correspondem a quase 1 quilo e 200 gramas por habitante/dia resultando em 500 mil toneladas em 12 meses (CREA-GO, 2007). Ao se observar a figura 1 (pg 23) observa-se que o aumento populacional de Goiânia se intensificou muito em um período relativamente pequeno. Sabendo que a produção de lixo está intimamente relacionada a esta causa, não se tem boas expectativas para o futuro.
O montante de lixo resultante dos quatro depósitos de amostragem somam juntos 1199.7m² (média de 299,75m²). Através desses dados pode-se estimar que o montante total dos dezenove depósitos juntos é de 5698.575m² de lixo inadequado jogado em lugares impróprios. Com o crescimento populacional esses números podem aumentar ainda mais, causando prejuízos ambientais e de saúde.

Segundo a Secretaria Nacional de Saneamento Básico do Ministério das Cidades o lixo urbano é constituído por 60% de resíduos de construção civil, 28% de lixo domiciliar e 11% são originados dos demais setores (CREA-GO, 2007). Os dados encontrados nessa pesquisa são semelhantes aos dados apresentados por essa secretaria, percebe-se que os depósitos tecnogênicos da bacia do ribeirão Anicuns possuem uma grande porcentagem de resíduos de construção civil.

Conforme apresenta Braga et al (2005), a preocupação com relação aos resíduos produzidos pelo homem é relativamente recente, anteriormente não se preocupava com a destinação do lixo produzido pelo homem. O fato de não se ter levado em conta o meio ambiente até o momento gerou aberrações, como o uso de elementos extremamente tóxicos. Como exemplo, podemos citar o chumbo e o mercúrio que, dependendo das concentrações utilizadas podem causar a morte de seres humanos.

De um modo geral, o DT 6 apresentou os maiores valores, o que comprova o quanto a ação antrópica pode modificar a natureza do solo. A matriz de correlação apresentou 11 associações geoquímicas superiores a 0,99, um indicativo de forte correlação.

Essas concentrações podem estar relacionadas com a geologia local, como também com despejo de dejetos sanitários e industriais. Existe uma lacuna quanto a real participação das rochas do embasamento que precisa ser elucidado com o desenvolvimento de projetos de pesquisas específicos. O chumbo, elemento que aumenta as concentrações a partir de efluentes industriais de baterias, rejeitos de soldas, o cádmio e outros elementos identificados são altamente poluentes e em contato com o homem podem causar sérias implicações de saúde.

Scarlato & Pontin (1992) apresentam diversas alternativas para a destinação do lixo urbano, a escolha da alternativa mais viável deve ser feita levando-se em contas não só os custos envolvidos, mas também as características socioeconômicas da região, além de, principalmente o custo ambiental. Para grandes comunidades como Goiânia, dificilmente uma solução única será suficiente, devendo-se realizar um estudo
para otimizar a localização das várias unidades, de modo a minimizar os custos e os impactos envolvidos.

O Brasil possui instituições experientes e um sistema legal mais ou menos consolidado, que envolve padrões ambientais e de emissão, regras de zoneamento e uso do solo, licenças, taxas e penalizações. Além disso, dispõe da Lei de Crimes Ambientais que oferece novas formas de penalização às atividades danosas ao meio ambiente. Da mesma forma, os estudos de impacto ambiental com audiência pública, por exemplo, para projetos de investimentos maiores, tornaram-se uma prática comum. Os estados da federação, por sua vez, apresentam inúmeras experiências diferenciadas, inclusive de aplicação de modernos instrumentos de mercado (como é o caso das licenças de direito a poluir, do ICMS ecológico), algumas com grande sucesso, e outras com menos (Souza, 2000).

O autor apresenta ainda, problemas de ordem política, social e estrutural que impedem o desenvolvimento do setor ambiental. Problemas de implementação, que compreendem, dentre outros, a dimensão continental do Brasil; o sucateamento da maioria das agências de controle ambiental; a falta de vontade política de muitos governantes; a priorização dos problemas econômicos em detrimento dos ambientais; e o poder econômico de muitos dos causadores de danos ao meio ambiente. Segundo ele, o país não tem conseguido resolver vários dos problemas ambientais mais graves devido a essa problemática.

A política ambiental brasileira é bastante reativa e pouca pró-ativa, ou seja, ela atua normalmente sob pressão e geralmente parte de denúncias e fatos já ocorridos, ao invés de se adiantar a eles. Uma política ambiental pró-ativa seria aquela que buscasse aproveitar vínculos positivos entre desenvolvimento e preservação ambiental; que atuasse de forma preventiva, que se antecipasse aos problemas; e que envolvesse a comunidade, os empresários e as instituições governamentais e não-governamentais em seu esforço de preservação do desenvolvimento e do meio ambiente. Isso é pouco visto na política ambiental brasileira (Souza, 2000).

A implantação de políticas ambientais e cumprimento da Lei de Crimes ambientais, contribuiria muito para conscientização da sociedade. Os resultados seriam inúmeros, desde a contemplação do ambiente acolhedor, até aqueles ligados à saúde.

Verifica-se que os depósitos tecnogênicos em geral e os construídos em particular, tornaram-se um problema ambiental e de saúde, que vai se agravando, na
medida em que, a população aumenta, e com eles, a produção de resíduos e a falta de uma política séria para o destino do lixo.

Através das fotos pode se perceber que há uma grande variedade de tipos de resíduos, o que dificulta a coleta seletiva e a reciclagem. Se a população se organizasse através de cooperativas esse problema poderia ser amenizado, além de render lucros.

A relação aumento populacional / produção do lixo / falta de política de destinação do lixo, que envolve as cidades, representadas pela área de estudos – bacia do ribeirão Anicuns, permite estabelecer uma previsão sombria para a saúde das nossas cidades para os próximos anos.

- O equacionamento desses problemas esbarra na falta de programas educativos capazes de envolver as comunidades, fundamentais para a mudança de hábitos;

- O poder público possui obsolescência técnico-administrativa e escassez de recursos para atender as crescentes demandas nas áreas de saneamento e infra-estrutura urbana, ou seja, políticas públicas voltadas para a sociedade urbana;

- Apesar de a legislação nos garantir direitos a saúde, educação, cidade sustentável, percebe-se que são apenas direitos formais submersos na crise do Estado que opta por atender primeiramente os problemas econômicos em detrimento aos ambientais e de saúde.

Os programas de promoção da saúde devem estar relacionados com as questões ambientais. Devem ser movimentos politicamente voltados para a equidade social, política e econômica.

Há vários processos que podem se constituir em medidas para amenizar os impactos na saúde e no e que devem estar em consonância com o Estado e a comunidade. São eles: a incorporação dos valores do ambiente na ética individual; nos direitos humanos e na norma jurídica dos atores econômicos e sociais; a socialização do acesso e apropriação da natureza; a democratização dos processos produtivos e do poder político; as reformas do Estado que lhe permitam mediar a resolução de conflitos de interesses em torno da propriedade e aproveitamento dos recursos e que favoreçam a gestão participativa e descentralizada dos recursos naturais; o estabelecimento de uma legislação ambiental eficaz que normatize os agentes econômicos, o governo e a sociedade civil; a reorientação interdisciplinar do desenvolvimento do conhecimento e da formação de profissionais no campo da saúde coletiva. Todos esses processos
implicam a necessidade de se avançar na reflexão sobre a pesquisa das ciências sociais no campo dos problemas ambientais que afetam a saúde coletiva.

Sabe-se que esta pode ser uma medida que contribuirá para que os depósitos tecnogênicos diminuam na área da bacia, porém esta não deve ser uma ação isolada, a promoção de ações integradas e a formulação de políticas públicas contando com a participação da sociedade contribuirão para o processo de conhecimento e compreensão da totalidade urbana.
7. CONCLUSÕES

O homem, um agente muito ativo, tende a deixar com freqüência crescente vestígios de sua presença em sedimentos, na geomorfologia e nos ambientes em geral. Os depósitos tecnogênicos são testemunhos de ambientes antropizados e da história do uso do solo. Essas ações antrópicas vêm causando impactos e intervenções na vida humana pelos motivos impostos anteriormente e não será mais possível estudar as formas de uso e ocupação do solo, seus impactos físicos, sem considerar as profundas modificações causadas pelo homem.

1) Percebeu-se durante a pesquisa que as disparidades do processo de urbanização, produziram diferentes tipos de depósitos no espaço urbano, e que os setores que mais crescem são os maiores produtores de entulhos, depositando os resíduos nos bairros de menor renda, onde concentram-se os maiores problemas sócio-ambientais.

2) Verificou-se também que a saúde da população está diretamente relacionada com as precariedades em saneamento básico e conseqüente degradação ambiental. Nessa problemática assumem também relevância a escolaridade e o conhecimento da população.

3) Através de exames de laboratório constatou-se que as amostras de solos retiradas nos depósitos tecnogênicos apresentam altas concentrações dos elementos químicos: Alumínio, Bário, Cádmio, Cobalto, Cromo, Cobre, Ferro, Lítio, Magnésio, Manganês, Sódio, Níquel, Chumbo, Escândio, Titânio, Vanádio, Zinco. Todos esses elementos apresentaram valores de background de 3ª ordem e superiores a tabela da CETESB, a qual possui valores genéricos internacionais na definição de padrões de qualidade para solos e águas subterrâneas.

Através dessa dissertação concluiu-se que:

- Apesar da legislação (plano diretor) os fundos de vales e os terrenos não ocupados tornam-se locais de destinação do lixo;
- Não há uma política voltada para a destinação dos resíduos de construção civil;
- Falta-se uma política de coleta seletiva de lixo;
- Inexistência de controle sanitário dos D.Ts presentes nas cidades;
- Os depósitos tecnogênicos surgem de um dia para o outro e aumentam velozmente de tamanhos. A predominância de resíduos de construção civil é notável
em todos os depósitos, isso devido ao desenfreado aumento da especulação imobiliária;

- Falta de conhecimento ambiental e de saúde por parte da população em relação à utilização de áreas próximas a esses depósitos.

4) A presença de depósitos tecnogênicos e altos níveis de concentração de elementos químicos no solo são frutos de uma ocupação desordenada e sem compromisso com o desenvolvimento sustentável.

5) Concluiu-se também que há uma teia de inter-relações na zona urbana, não se lida com uma estrutura linear, mas sim com uma estrutura complexa, onde a degradação de uma área acaba gerando inúmeros outros problemas de ordem cada vez maior.
8. REFERÊNCIAS BIBLIOGRÁFICAS

Diretoria de Geociências do IBGE. *Saneamento básico e problemas ambientais em Goiânia – 1992*.

IPLAN (Instituto de Planejamento Municipal) - **Plano de Desenvolvimento Integrado de Goiânia - PDIG.** Goiânia: IPLAN, Prefeitura de Goiânia. 1992

ANEXOS