Compartilhamento |
![]() ![]() |
Use este identificador para citar ou linkar para este item:
http://tede2.pucgoias.edu.br:8080/handle/tede/3853
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Alves, André Luiz | - |
dc.creator.Lattes | http://lattes.cnpq.br/2753797227214950 | eng |
dc.contributor.advisor1 | Coelho, Clarimar José | - |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/1350166605717268 | eng |
dc.contributor.referee1 | Soares, Anderson da Silva | - |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/1096941114079527 | eng |
dc.contributor.referee2 | Centeno, Carmen Cecilia | - |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/3865373650548957 | eng |
dc.date.accessioned | 2017-11-22T13:39:54Z | - |
dc.date.issued | 2017-09-22 | - |
dc.identifier.citation | Alves, André Luiz. PARTICIONAMENTO DE CONJUNTO DE DADOS E SELEÇÃO DE VARIÁVEIS EM PROBLEMAS DE CALIBRAÇÃO MULTIVARIADA. 2017. 51 f. Dissertação (Programa de Pós-Graduação STRICTO SENSU em Engenharia de Produção e Sistemas) - Pontifícia Universidade Católica de Goiás, Goiânia-GO. | eng |
dc.identifier.uri | http://tede2.pucgoias.edu.br:8080/handle/tede/3853 | - |
dc.description.resumo | O objetivo do trabalho é comparar um algoritmo proposto baseado no método consenso de amostra aleatória (RANdom SAmple Consensus, RANSAC) para seleção de amostras, seleção de variáveis e seleção simultânea de amostras e variáveis com o algoritmo de projeções sucessivas (Sucessive Projections Algorithm, SPA) a partir de conjuntos de dados químicos no contexto da calibração multivariada. O método proposto é baseado no método RANSAC e regressão linear múltipla (Multiple Linear Regression, MLR). A capacidade preditiva dos modelos é medida empregando o erro de previsão da raiz quadrada do erro quadrático médio (Root Mean Square Error Of Prediction, RMSEP). Os resultados permitem concluir que o Algoritmo das Projeções Sucessivas melhora a capacidade preditiva do Ransac. Conclui-se que o SPA influi positivamente no algoritmo Ransac para seleção de amostras, para seleção de variáveis e também para seleção simultânea de amostras e variáveis. | eng |
dc.description.abstract | The objective of this work is to compare a proposed algorithm based on the RANdom SAmple Consensus (RANSAC) method for selection of samples, selection of variables and simultaneous selection of samples and variables with the Sucessive Projections Algorithm (SPA) from a chemical data set in the context of multivariate calibration. The proposed method is based on the RANSAC method and Multiple Linear Regression (MLR). The predictive capacity of the models is measured using the Root Mean Square Error of Prediction (RMSEP). The results allow to conclude that the Successive Projection Algorithm improves the predictive capacity of Ransac. It is concluded that the SPA positively influences the Ransac algorithm for selection of samples, for selection of variables and also for simultaneous selection of samples and variables. | eng |
dc.description.provenance | Submitted by admin tede ([email protected]) on 2017-11-22T13:39:54Z No. of bitstreams: 1 André Luiz Alves.pdf: 760209 bytes, checksum: 09b516d6ffcca2c7f66578b275613b36 (MD5) | eng |
dc.description.provenance | Made available in DSpace on 2017-11-22T13:39:54Z (GMT). No. of bitstreams: 1 André Luiz Alves.pdf: 760209 bytes, checksum: 09b516d6ffcca2c7f66578b275613b36 (MD5) Previous issue date: 2017-09-22 | eng |
dc.format | application/pdf | * |
dc.thumbnail.url | http://tede2.pucgoias.edu.br:8080/retrieve/11828/Andr%c3%a9%20Luiz%20Alves.pdf.jpg | * |
dc.language | por | eng |
dc.publisher | Pontifícia Universidade Católica de Goiás | eng |
dc.publisher.department | Escola de Engenharia::Curso de Engenharia de Produção | eng |
dc.publisher.country | Brasil | eng |
dc.publisher.initials | PUC Goiás | eng |
dc.publisher.program | Programa de Pós-Graduação STRICTO SENSU em Engenharia de Produção e Sistemas | eng |
dc.rights | Acesso Aberto | |
dc.subject | Particionamento de dados, Seleção de amostras e de variáveis, Calibração multivariada. | por |
dc.subject | Data partitioning, Sample selection and variable selection, Multivariate calibration. | por |
dc.subject.cnpq | ENGENHARIAS::ENGENHARIA DE PRODUCAO | eng |
dc.title | PARTICIONAMENTO DE CONJUNTO DE DADOS E SELEÇÃO DE VARIÁVEIS EM PROBLEMAS DE CALIBRAÇÃO MULTIVARIADA | eng |
dc.type | Dissertação | eng |
Aparece nas coleções: | Mestrado em Engenharia de Produção e Sistemas |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
André Luiz Alves.pdf | Texto Completo | 742,39 kB | Adobe PDF | ![]() Baixar/Abrir Pré-Visualizar |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.