???jsp.display-item.social.title??? |
![]() ![]() |
Please use this identifier to cite or link to this item:
http://tede2.pucgoias.edu.br:8080/handle/tede/4512
Tipo do documento: | Dissertação |
Título: | Seleção de portfólio de ações por meio de otimização metaheurística híbrida com redes neurais LSTM |
Título(s) alternativo(s): | Stock portfolio selection through hybrid metaheuristic optimization with LSTM neural networks |
Autor: | Milhomem, Danilo Alcântara ![]() |
Primeiro orientador: | Dantas, Maria José Pereira |
Primeiro membro da banca: | Lobato, Fran Sérgio |
Segundo membro da banca: | Figueiredo, Reginaldo Santana |
Resumo: | O problema de otimização de portfólio consiste na formação de um conjunto de ativos e suas respectivas proporções de forma que o risco seja minimizado e o retorno maximizado. O trabalho tem como objetivo melhorar o modelo de otimização de portfólio, calibrando a cardinalidade e reduzindo o erro de estimativa da carteira, por meio do algoritmo de Colônia de Abelhas Artificiais (ABC) híbrido com Redes Neurais Long Short Term Memory (LSTM). Com relação a metodologia, realizou-se duas revisões sistemáticas de literatura para verificar o estado da arte sobre o tema da pesquisa. Também se fez duas aplicações: na primeira as carteiras são construídas via otimização por meio do modelo de Markowitz e na segunda usase o Modelo de Markowitz com restrição de cardinalidade. Os resultados mostram que, para os dados analisados, o aumento do número de ativos, em carteiras otimizadas, não reduz o risco desta. Além disso, chama-se a atenção para a importância do uso de simulações e da experimentação como principal abordagem a ser usada para definir a quantidade ideal de ativos em uma carteira. O algoritmo ABC híbrido com Redes Neurais Recorrentes LSTM mostraram-se como técnica potencial para redução do erro de estimativa e para otimização. As limitações foram: os filtros usados nas revisões de literatura podem ter excluído trabalhos importantes; além disso, a escolha de ativos com base em sua liquidez e período de participação na bolsa, embora justificada, pode ter evitado a análise de ativos com boas possibilidades de ganhos em termos de retorno |
Abstract: | The portfolio optimization problem consists in the formation of a set of assets and their respective proportions so that the risk is minimized and the return maximized. The work aims to improve the portfolio optimization model, calibrating the cardinality and reducing the error of estimating the portfolio, through the hybrid Artificial Bee Colony (ABC) algorithm with Long Short Term Memory (LSTM) Neural Networks. Regarding the methodology, two systematic literature reviews were carried out to verify the state of the art on the research topic. Two applications were also made: in the first, portfolios are built via optimization using the Markowitz model and in the second, the Markowitz model with cardinality restriction is used. The results show that, for the analyzed data, the increase in the number of assets, in optimized portfolios, does not reduce its risk. In addition, attention is drawn to the importance of using simulations and experimentation as the main approach to be used to define the ideal amount of assets in a portfolio. The hybrid ABC algorithm with LSTM Recurrent Neural Networks proved to be a potential technique for reducing the estimation error and for optimization. The limitations were: the filters used in the literature reviews may have excluded important works; in addition, the choice of assets based on their liquidity and period of participation in the stock exchange, although justified, may have avoided the analysis of assets with good chances of gains in terms of return |
Palavras-chave: | Cardinalidade, Long Short Term Memory, otimização, investimentos, problema de programação quadrática inteira mista Cardinality, Long Short Term Memory, optimization, investments, mixed integer quadratic programming problem. |
Área(s) do CNPq: | Engenharias: Engenharia de Produção |
Idioma: | por |
País: | Brasil |
Instituição: | Pontifícia Universidade Católica de Goiás |
Sigla da instituição: | PUC Goiás |
Departamento: | Escola de Engenharia::Curso de Engenharia de Produção |
Programa: | Programa de Pós-Graduação STRICTO SENSU em Engenharia de Produção e Sistemas |
Citação: | Milhomem, Danilo Alcântara. Seleção de portfólio de ações por meio de otimização metaheurística híbrida com redes neurais LSTM. 2020. 124 f. Dissertação( Programa de Pós-Graduação STRICTO SENSU em Engenharia de Produção e Sistemas) - Pontifícia Universidade Católica de Goiás, Goiânia. |
Tipo de acesso: | Acesso Aberto |
URI: | http://tede2.pucgoias.edu.br:8080/handle/tede/4512 |
Data de defesa: | 13-Mar-2020 |
Appears in Collections: | Mestrado em Engenharia de Produção e Sistemas Mestrado em Engenharia de Produção e Sistemas |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Danilo Alcântara Milhomem.pdf | 3,91 MB | Adobe PDF | ![]() Download/Open Preview |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.